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Abstract

The recent development of fermionic quantum gas microscopes has enabled studies

of cold atom Fermi-Hubbard systems with single-site resolution, revealing a variety

of interesting phenomena in regimes which are difficult to access with existing theory

techniques. The Fermi-Hubbard model is of great intrinsic interest as a toy model for

strongly correlated quantum physics, and may also describe the phenomenology of

high-temperature superconducting materials such as the cuprates. Most experimen-

tal studies of cold atom Fermi-Hubbard systems have focused on probing equal-time

spin and density correlations, but a wide region of the low temperature phase diagram

may be better understood by exploring dynamical (unequal-time) properties. In this

thesis, we first report on an experiment exploring the response of antiferromagnetic

spin correlations to a magnetic field, and find evidence for short-range canted antifer-

romagnetic spin correlations. Then we turn our focus to probing response functions

associated with unequal-time correlations relevant for understanding the pseudogap

and strange metal regimes of Fermi-Hubbard systems. First, we describe the de-

velopment of a technique to measure microscopic diffusion, and hence resistivity, in

doped Mott insulators. We find that this resistivity exhibits a linear dependence on

temperature and violates the Mott-Ioffe-Regel limit, two signatures of strange metal-

lic behavior. Next, we report on the development of angle-resolved photoemission

spectroscopy (ARPES) compatible with quantum gas microscopy and its application

to studying pseudogap physics in an attractive Fermi-Hubbard system across the

BEC-BCS crossover, setting the stage for future studies of the pseudogap regime in

repulsive Hubbard systems.
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Chapter 1

Introduction

The theory of quantum mechanics provides an exquisitely accurate description of

microscopic physics at low energies. Part of the power of the theory lies in the ideas

of superposition and entanglement, concepts which have no analog in classical physics.

The price for this added descriptiveness is the necessity to simultaneously consider

every possible state of the system in its mathematical description, which leads to

an exponential growth of the size of the Hilbert space as the number of degrees of

freedom is increased. This makes quantum mechanics unwieldy in situations where

the full quantum nature of problem must be considered. In such cases, determining

the ground state or calculating the time evolution of the system (e.g. after a quench)

are both very difficult problems and cannot be solved exactly for more than a few

tens of particles. In consequence, our understanding of generic interacting quantum

systems is severely limited.

Strongly-correlated quantum materials are one important example of such intrinsi-

cally “quantum” problems. These systems include high-Tc superconducting cuprates,

heavy-fermion metals, interacting topological quantum materials such as the frac-

tional quantum hall state and many others that exhibit novel states of matter which

are poorly understood and may lead to groundbreaking technological applications.
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As there are no small parameters in these problems, there is no obvious perturba-

tive approach to understand their properties. In particular, interaction effects must

be treated on equal footing with other parameters. Strong correlation effects cause

näıve mean-field approaches to break down, and there is a dearth of applicable theory

techniques. In most cases such problems cannot be solved exactly, and numerics are

limited to small systems due to the large Hilbert space dimensions and therefore often

suffer from finite size effects.

This situation has motivated the development of quantum simulation as an al-

ternate approach for understanding quantum systems. In 1982 Richard Feynman

suggested that a natural way to model one quantum system is to simulate it using

a “computer” built from quantum components [1]. This suggestion has motivated

tremendous effort to develop fully programmable “digital” quantum computers capa-

ble of solving a large class of problems. However, for the purpose of understanding

strongly correlated quantum systems, we are interested in a more restricted class of

problems: finding the ground state of a given Hamiltonian and probing its properties

by measuring various observables, or modeling the time evolution of an initial state

under the action of the Hamiltonian.

To solve this more constrained class of problems, we emulate the Hamiltonian of

interest using a synthetic quantum system. This approach, referred to as quantum

simulation or “analog” quantum computing, is very useful if we choose a synthetic

quantum system which is more broadly tunable, easier to study, and contains fewer

extraneous degrees of freedom than the system we would like to understand. Over the

past several decades, a number of synthetic quantum systems have been developed,

including trapped ions, quantum dots, superconducting qubits, photonic structures,

and ultracold atoms. These various approaches are complementary, and each has

proven more suitable for certain applications. One outstanding challenge for many

of these platforms is scalability, which is vital as studying many-body physics is

2



facilitated by large system sizes. However, confounding effects such as decoherence

and disorder often scale unfavorably with system size.

Ultracold atoms in optical lattices have distinguished themselves as one of the

few synthetic systems which can simultaneously access many-body physics and reach

system sizes of thousands of particles. These systems have a number of advantages,

including that they are well-isolated from the environment because they are confined

using magnetic or optical traps in ultra-high vacuum (UHV) systems which routinely

reach background pressures on the order of 10−12 torr. Optical lattices have no dis-

order, no impurities, and no phonons. The relative simplicity of the alkali atoms

commonly employed allows parameters to be extracted from ab initio calculations.

Furthermore, ultracold atom systems are highly tunable. The geometry and dimen-

sionality can be adjusted by using different optical potentials. It is possible to work

in 1D, 2D, or 3D and to dynamically adjust the potential landscape. Interactions

between particles can be tuned by adjusting the magnetic field using Feshbach reso-

nances.

1.1 High temperature superconductivity and the

Fermi-Hubbard model

The Bardeen-Cooper-Schrieffer (BCS) theory [2] provides an effective description of

most of the superconducting systems studied from Onnes’ initial 1911 discovery in

mercury [3] to the early 1980’s. The BCS theory is a mean-field theory which describes

how an arbitrarily weak attractive interaction can lead to superconductivity with a

transition temperature that is exponentially small in the interaction strength, Tc ∝

exp [−1/g(µ)Vo] where g(µ) is the density of states at the Fermi level and Vo is the

interaction strength. In real materials a weak attractive interaction between electrons
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is mediated by electron-phonon interactions. This mechanism sets an upper limit on

the superconducting critical temperature around 30 K [4].

Therefore, it was a surprise when the first superconductor with a transition tem-

perature near 35 K, LBCO, was discovered in 1986 [5]. Soon after, the maximum

observed Tc was pushed above liquid nitrogen temperatures in YBCO [6]. These high-

Tc cuprate materials are anisotropic layered ceramic structures, consisting of CuO2

planes separated by layers of dopant atoms. At filling of one electron per copper-

oxygen unit cell, cuprates are antiferromagnetic Mott insulators, but upon hole doping

they exhibit d-wave superconductivity with short coherence length [7, 8, 9]. In fact,

the coherence length is shorter than the spacing between copper-oxygen planes im-

plying that the pairing physics happens in 2D. These materials also show anomalous

behavior in the normal state, including a pseudogap regime for hole-doped systems

below optimal doping, and a strange metal regime characterized by unconventional

transport characteristics that may imply it is not a Fermi liquid [9]. These vari-

ous phenomena are not explained by the BCS theory and seem incompatible with

electron-phonon coupling mediating the superconductivity.

Soon after the initial HTSC discovery, Anderson suggested that the essential

physics of the cuprates might be due only to the electronic sector and captured by the

2D Fermi-Hubbard model [10]. The (repulsive) Fermi-Hubbard model was initially

introduced to explain the behavior of electrons in bands composed of d-orbitals in

transition metals, where it was argued the band widths should be narrow compared to

the interaction energy, leading to enhanced interaction effects, and that on-site inter-

action should dominate due to local character of these orbitals [11, 12, 13, 14]. Initially

a three-band Hubbard model was proposed to describe the cuprates [15, 16, 17] ac-

counting for bands formed from the 2px and 2py orbitals in oxygen and the 3dx2−y2

orbital in copper, but soon after it was realized that a simplified one-band model

should be sufficient [18, 19]. It is now generally believed that the essential physics of
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HTSC is the physics of doping a Mott insulator [9] as described by this single-band

Hubbard model.

The discovery of the HTSC materials catalyzed a tremendous amount of further

experimental and theoretical studies, but progress understanding the origin of the

curious phenomenology was slow and uncertain. Almost ten years after the initial

discovery of cuprate HTSC’s it was appropriate to write,

“ It seems that over 30000 papers have been written in the field of high Tc

superconductivity since the fundamental discovery of G. Bednorz and K.A. Müller

in 1986. Considering that, despite the enormous effort, progress has been little,

the mean field expected information per paper is “little”/30000, Therefore it is

probably not worth to read papers and it may be even less reasonable to write

them. ” [20]

Almost twenty-five years later the situation is fundamentally similar in the sense that

there is still no unifying theory or deep theoretical understanding of the origins of

cuprate HTSC. Once more, it is still unclear how much of the HTSC physics the Fermi-

Hubbard model captures in spite of the development of a variety of new analytic and

numerical techniques [21]. This situation provides tremendous incentive to adopt an

alternative approach – simulating the Fermi-Hubbard model using ultracold fermions

in optical lattices.

1.2 Realizing the Fermi-Hubbard model in optical

lattices

Since the first realization of a Bose-Einstein condensate (BEC) in a dilute atomic

vapor in 1995 [22, 23] the scope of so called ultracold atom physics has grown enor-

mously, progressing from studying weakly interacting quantum systems to exploring

strongly correlated physics. At first glance, it is surprising that it is possible to reach
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a quantum regime in these dilute systems at all. Typical densities in cold atomic

gases are n = 1012 − 1014 /cm3, at least five orders of magnitude less dense than air,

n ∼ 1019 /cm3. To determine where quantum mechanical effects become important

the interparticle spacing should be compared with the thermal de Broglie wavelength,

λdB = h/
√

2πmkbT . We define the phase space density as the ratio of these volumes,

ρ = nλ3
dB. For air λdB ∼ 0.2�A, giving a phase space density of ρ ∼ 10−7. On

the other hand, typical electrons in a solid at room temperature have densities of

1021−1023 /cm3, and ρ = 102−104 aided by the electron’s small mass. Because alkali

gases are metastable systems with lifetimes typically limited by three-body loss at

high densities, achieving large phase space densities requires extremely low tempera-

tures. Temperatures on the order of nanokelvin can now be routinely achieved in a

variety of atomic species, including many of the alkalis, some alkaline earth elements,

and some lanthanides.

Reaching a strongly correlated many-body regime with fermions has been enabled

by the development of degenerate Fermi gases of dilute atomic gases [24, 25] and

early work on bosons in optical lattices. This many-body regime can be contrasted

with early work on BEC’s, which despite their quantum nature can be described

by a single macroscopic wave function and understood using the mean-field Gross-

Pitaevskii equation [26]. The first proposal to realize Hubbard systems using optical

lattices was introduced around the same time as the first degenerate atomic Fermi

gas [27], although the study of atoms in optical lattices predates the realization of a

BEC in cold atoms [28]. Hubbard systems were first realized using bosons, where the

study of the superfluid (SF) to Mott insulator (MI) transition in the Bose-Hubbard

model firmly established the possibility of reaching a many-body regime in cold atom

experiments [29, 30, 31, 32, 33].

Early suggestions that ultracold fermions in optical lattices could be used as a

tool to address outstanding questions about the Fermi-Hubbard model came around
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the same time as the early Bose-Hubbard experiments [34]. A 3D Fermi-Hubbard

system was first realized in 2005 [35], and early experiments focused on thermome-

try [36, 37, 38] and found evidence of Mott insulating behavior [39, 40, 41]. Later

experiments explored local spin correlations [42, 43], large spin degeneracy [44, 45],

hexagonal lattices [46, 47], the equation of state [48], and antiferromagnetism [49, 50].

Other experiments studied 2D Fermi-Hubbard systems, mapping the equation of state

[51], exploring short-range correlations [52, 53], and observing evidence of antiferro-

magnetic correlations [54, 55].

The development of the quantum gas microscope (QGM) [56, 57] expanded the

capabilities of cold atom experiments by enabling lattice site resolved measurements

of atomic density distributions and correlations. The QGM fluorescence imaging tech-

niques (see section 2.2) give exquisite signal-to-noise compared with other common

approaches, and enabled the first studies of single-layer 2D systems. QGM’s were first

developed for bosonic atoms, where they reexamined the SF to MI transition in the

2D Bose-Hubbard model [58] among many other experiments [59]. The development

of QGM’s for the fermionic alkali atoms 6Li [60, 61] and 40K [62, 63, 64] in 2015

catalyzed rapid progress in studying static properties of Fermi-Hubbard systems, in-

cluding observation of the Mott insulating state [65, 66] and antiferromagnetic spin

correlations in 1D [67] and 2D [68, 69].

This work has been followed by various other probes of static properties of the

Fermi-Hubbard model, including observation of canted antiferromagnetic spin correla-

tions (chapter 4 and reference [70]), charge-density wave correlations in the attractive

model [71], magnetic polarons in the doped repulsive model [72], development of tech-

niques aiming to reach lower temperatures [73, 74], and further exploration of spin

correlations to test parton theories of the doped Mott insulating state [75]. The static

properties of the 1D model have been extensively studied, including observations of
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spin-charge separation by measuring string correlations [76] and incommensurate an-

tiferromagnetism [77].

In contrast, the dynamical properties of Fermi-Hubbard systems have received

much less experimental attention. Experiments without microscopes have largely

explored far-from-equilibrium settings [78, 79, 80, 81], however near-equilibrium dy-

namics is also extremely interesting. Near-equilibrium experiments can be described

in terms of linear response functions which are related to unequal-time correlation

functions (see section 3.7). These functions provide a wealth of detail about a given

many-body system, but are often more difficult to calculate in theory than static cor-

relators and therefore are not accessible at the same low temperatures. This opens

the possibility that quantum simulators may provide experimental results that can

test different theoretical approximations or distinguish between competing theories.

However the variety of techniques available for measuring dynamical quantities in

QGM experiments is rather limited.

In this thesis, we develop several new tools to study dynamical quantities in the

Fermi-Hubbard model. In particular, in chapter 5 we develop a technique to measure

the charge diffusion constant and resistivity of a 2D Fermi-Hubbard system [82]. In

chapter 6 we develop a technique which is analogous to angle-resolved photoemission

spectroscopy (ARPES) and apply this to measure the occupied single-particle spectral

function in an attractive Fermi-Hubbard system [83]. These techniques, in combina-

tion with other work studying the optical conductivity [84], spin-diffusion [85], and

hole dynamics [86], constitute an emerging toolkit for quantum gas microscopy which

realizes some of the promises of quantum simulation by probing regimes inaccessible

to theory.

The major impediment to fully mapping the phase diagram of the Fermi-Hubbard

model using ultracold atom experiments is the achievable temperature. The extremely

low absolute temperatures are counterbalanced by correspondingly low Fermi temper-
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atures due to the dilute nature of these systems. Current Fermi-Hubbard experiments

reach values of T/Tf = 0.05− 0.1, which is comparable to the value for electron sys-

tems at 103 K. The very low absolute energy scales required in cold atoms are the

penalty for the large characteristic length scales and slow dynamics which make them

so attractive to study. Already at current temperature scales, cold atom experiments

can explore dynamical quantities which are poorly understood theoretically. Never-

theless, achieving the ambitious goal of “solving” the Fermi-Hubbard model using

quantum simulation will require reaching lower temperatures. This aim may not be

as daunting as it sounds — a factor of ∼ 10 decrease in temperature is all that is

required.
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Chapter 2

Apparatus and experimental

techniques

The experiments discussed in this thesis were carried out with an apparatus for pro-

ducing a degenerate Fermi gas of 6-lithium in an optical lattice using an all optical

evaporation with a cycle time of ∼ 15 s and imaging the atomic density with single-

site resolution using quantum gas microscopy techniques. In this chapter we outline

the function of this apparatus, first describing the experimental sequence, then con-

sidering various details of the optical lattice, imaging techniques and experimentally

accessible observables, stabilization electronics, and recently implemented spatial light

modulator setup. More detailed descriptions of the design and construction of the

apparatus and diagrams of the laser systems are available in [87]. Portions of the

apparatus are similar to that of the Heidelberg group, which is well documented in

[88, 89]. Similar QGM techniques for lithium are described in [90, 91].

2.1 Experimental sequence

The vacuum chamber is divided into two sections: an “oven chamber” where a thermal

vapor of lithium is produced, and a “science chamber” where lithium atoms are cooled
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Step ncenter T Tf λdB ρcenter

MOT 1× 109 /cm3 1.5 mK 20 nm 7× 10−9

CMOT 2× 1010 /cm3 300 µK 40 nm 1× 10−6

ODT 1× 1012 /cm3 200 µK 50 nm 1× 10−4

evaporated ODT 1× 1012 /cm3 2 µK 400 nK 500 nm 0.13

light sheet 1.4× 1012 /cm3 2 µK 500 nK 550 nm 0.2

evaporated
light sheet

1.5× 1012 /cm3 400 nK < 500 nK 1.1 µm

unevaporated
2D trap

1.4× 108 /cm2 300 nK < 350 nK 1.3 µm

2D lattice 2× 108 /cm2 15 nK 200 nK 6 µm

Table 2.1: Preparation of a degenerate Fermi gas. For the initial stages of prepara-
tion, temperature is determined from time of flight measurements, and density from
absorption imaging. In the lattice, temperature is determined from correlation func-
tions, and density from fluorescence imaging. Estimating the temperature in the
intermediate regime, where T ≈ Tf , is more challenging.

and trapped, and the experiments take place. The two sections are separated by a

differential pumping tube, which allows the oven chamber pressure to be on the order

of 10−9 torr while the science chamber pressure is 10−11 torr, two orders of magnitude

smaller. We also separate the two chambers with a gate valve, which allows the

lithium source to be exchanged without breaking vacuum in the science chamber.

We produce a sufficient vapor pressure in the oven chamber by heating a block of

solid lithium metal to 360 ◦C. At this temperature the atoms have a mean velocity of

〈v〉 =
√

8kbT
πm
∼ 1500 m/s. Thermal atoms travel through a collimating aperture near

the beginning of a Zeeman slower. The Zeeman slower reduces their axial velocity to

∼50 m/s which is slow enough to allow them to be captured by the magneto-optical

trap (MOT).

We load the MOT for 5 s to accumulate sufficient atom number for further stages

of cooling at an initial temperature of 1.5 mK. Under optimal conditions, we load

109 atoms in the MOT. Under more typical conditions, we operate with ∼200× 106
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atoms. Next, we produce a compressed MOT (CMOT) by ramping the laser fre-

quencies closer to the atomic resonance and lowering the power in the MOT beams,

which reduces the temperature and increases the density further. The temperature

of the cloud is typically a factor of 1.5-2 greater than the Doppler temperature for

the lithium D-line, TD = 140 µK.

Sub-Doppler cooling techniques, such as Sisyphus cooling [92], are not effective

for lithium due the unresolved hyperfine structure of the 2P3/2 state. In early ex-

periments, we utilized D1 gray molasses cooling [93] to reach lower temperatures.

However, we found that the experimental complexity of the additional laser system

that was required outweighed the modest benefits in phase space density. Instead,

following the CMOT stage we load the atoms directly into a crossed beam optical

dipole trap (ODT) consisting of 110 W of 1070 nm light in each arm. The waists of the

beams are about 90 µm and the maximum trap depth is 1 mK. The ODT is generated

by a multi-mode Ytterbium fiber laser, IPG Photonics YLR-200-LP-AC-Y11, with

spectral line width < 4 nm.

After the atoms are trapped in the ODT we optically pump them to the F = 1
2

hyperfine manifold to prevent spin-exchange collisions. We then ensure the popula-

tions in the |1〉 and |2〉 states are equal using a sequence of 10 radiofrequency pulses

performed at a magnetic field of 545 G. Finally, we create a balanced |1〉−|3〉 mixture

by transferring the |2〉 atoms to state |3〉 using an rf Landau-Zener sweep at 790 G.

We perform an optical evaporation at 700 G near the |1〉 − |3〉 Feshbach reso-

nance at 690 G [94] by lowering the ODT laser intensity using an exponential shape

for 2 s. We stop the evaporation before the gas is cold enough to form Feshbach

molecules. After this initial stage of evaporation we ramp the field away from the

Feshbach resonance and evaporate further to produce a degenerate Fermi gas which

is adiabatically connected to the upper branch of the resonance. We first set the

field in the range 50-500 G where the |1〉 − |3〉 scattering length is large and attrac-
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tive, a13 ∼ −900 − −450 ao where ao is the Bohr radius. We load the gas into an

anisotropic “light sheet” beam which has an in-plane waist of 50 µm, and an out of

plane waist of 5 µm. The light sheet is also anisotropic in-plane, with aspect ratios

ωx : ωy : ωz = 1 : 2 : 10. In preparation for later stages of the sequence, we turn on

an additional “bottom beam” that provides radial confinement. We evaporate in this

combined potential by ramping down the depth of the light sheet trap in the presence

of a magnetic gradient created by the MOT coils.

Next we compress the gas into 2D by loading the atoms into a single fringe of

an accordion lattice [95, 96] formed by 532 nm light. The initial lattice spacing is

7 µm. After loading this fringe, we turn off the light sheet potential entirely. We

compress the accordion lattice to a final spacing of 3.5 µm where the trap frequency

is ω = (2π)20 kHz. At this point the gas is quasi two-dimensional in the sense that

only the ground state of the axial potential is occupied. The trap is approximately

circular, with an aspect ratio ωx/ωy ≈ 1.2.

We perform a final stage of evaporation in the 2D potential by ramping down the

bottom beam intensity in the presence of a magnetic gradient created by the MOT

coils. Due to the different magnetic moments of the |1〉 and |3〉 states, the final spin

imbalance of the system can be adjusted by changing the evaporation field and the

value of the magnetic field gradient. We produce a balanced cloud by evaporating

near 500 G, or a nearly polarized gas of state |1〉 atoms by evaporating near 50 G. At

the end of this evaporation, we adiabatically load a 2D in-plane optical lattice formed

by a single laser beam which interferes with itself four times (see section 2.5). We

ramp the magnetic field to set the scattering length, typically using values between

100 mG and 620 G. At larger fields, the proximity of the Feshbach resonance leads to

atom loss.

During each stage of the experimental preparation, we assess the degree of degen-

eracy using several metrics. The first is the phase space density, ρ = nλ3
dB which is
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the number of particles in a cubic thermal de Broglie wavelength, λdB = h/
√

2πmkbT .

The phase space density is appropriate when the gas is not degenerate and the fact

we work with a spin mixture is less relevant. The second is the temperature relative

to the Fermi temperature, T/Tf . At sufficiently low temperature, we can estimate the

Fermi temperature from the central density. For a 3D sample, kf = (6π2nσ,center)
1/3

and kbTf = ~2k2
f/(2m), where nσ,center is the density of spin σ atoms at the center

of the trap [25]. For a 2D sample, kf = (4πnσ,center)
1/2. This is the more relevant

quantity in the degenerate regime. Typical atomic densities, temperatures, and phase

space densities during various phases of the preparation are summarized in table 2.1.

2.2 Raman imaging

After performing an experiment, we image the atomic density by freezing the atoms

in place (“pinning” them on individual sites of the optical lattice), causing them

to fluoresce, and collecting the fluorescence photons with a high-resolution imaging

system. To prevent the atoms from being heated out of the lattice during the imaging

process, we simultaneously cool them using a Raman sideband cooling scheme similar

to [60, 61]. We find this technique to be more efficient for lithium than EIT cooling

[97], which has been used for 40K [62].

To realize Raman sideband cooling, we couple the 2S1/2 |F = 3/2〉 |n〉 state to

the |F = 1/2〉 |n− 1〉 state using a pair of Raman beams and drive cooling by opti-

cally pumping atoms from the |F = 1/2〉 |n− 1〉 state to the 2P1/2 |F = 3/2〉 state.

Here n refers to the vibrational level in the harmonic trap, and we describe the Ra-

man scheme for a one-dimensional trap for simplicity. In the Lamb-Dicke regime,

the 2P1/2 |F = 3/2〉 |n− 1〉 state preferentially decays to the 2S1/2 |F = 3/2〉 |n− 1〉

state, leading to net cooling via removal of vibrational energy. The cooling process

terminates once the atoms reach the |F = 3/2〉 |n = 0〉 state, which is a dark state
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in this one-dimensional picture. For Raman cooling to work efficiently, spontaneous

emission from the 2P1/2 |F = 3/2〉 |n− 1〉 must preserve the vibrational quantum

number. Transitions between different motional quantum numbers |n〉 and |n± d〉

are suppressed by a factor of η2d, where η = klo is the Lamb-Dicke parameter, k is

the wave vector of the emitted photon, and lo =
√
~/2mω is the harmonic oscillator

length.

We pin the atoms on-site in the optical lattice using 20 W of 1064 nm light from a

42 W master oscillator power amplifier (MOPA) laser (Coherent Mephisto MOPA)

focused to a beam waist of 70 µm. The on-site trapping frequency is ω = (2π)1.5 MHz.

The vibrational levels in the lattice are well resolved, as the effective line width of the

states is only due to the Raman lasers dressing the ground state with a fraction of the

2P excited states. This tight trapping frequency leads to a Lamb-Dicke parameter of

ηx,y = 0.2. The confinement in the axial direction due to the lattice is much weaker,

so to increase it we turn on the light sheet using 12 W of light, producing a trapping

frequency of ω = (2π)70 kHz. This leads to a Lamb-Dicke parameter of ηz = 1.

The Raman beams are detuned 5 GHz to the red of the D1 line. We typically

operate with 50 µW focused to a waist of about 1 mm for the pump beam and 3 mW

focused to a waist of 75 µm for each Raman beam. We estimate the Rabi frequency,

Ω = (2π)180 kHz, from the scaling of the width of Raman spectra with power. The

Raman axis is along the diagonal of the square lattice tilted ∼10° out of plane, the

maximum angle allowed by our chamber geometry, to ensure coupling to all three

trap axes. The beams are in a retro-reflected lin-⊥-lin configuration meaning that the

incoming beam has a vertical polarization and the retro-reflection has a horizontal

polarization. The incoming beam has higher frequency and couples the F = 1/2

ground states to the excited states. We observe that the Raman sideband cooling is

most efficient when we adjust the bias magnetic field to 200 mG pointing in the plane

and roughly perpendicular to the Raman axis. From the perspective of the atoms
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the incoming Raman beam has an equal mixture of σ± polarizations, and the retro-

reflection has π polarization. The finite field detunes some of the transitions between

F = 1/2 and F = 3/2 ground states, most likely the |1〉 = |F = 1/2 mf = 1/2〉 to

|6〉 = |F = 3/2 mf = 3/2〉 transition. We find adjusting the field in this way enhances

the efficiency of the cooling process, leading to less tunneling of atoms between sites.

We simultaneously optically pump the atoms using a beam which is near resonant

to the 2S1/2 |F = 1/2〉 to 2P1/2 transition. The optical pumping beam is circularly

polarized and travels along the diagonal of the lattice, but is tilted out of the plane

a few degrees less than the incoming Raman beam. From the perspective of the

atoms this beam has 0.5 π polarization and 0.25 of each σ± polarization. More

efficient pumping could be achieved by using a purely σ polarized beam along the

quantization axis.

The interplay between the cooling of the strongly confined lattice directions with

small Lamb-Dicke parameter and the weakly confined light sheet direction with large

Lamb-Dicke parameter has not been studied in detail. One possibility is that the

Raman beams effectively couple the weakly confined direction with the strongly con-

fined directions, and thus the cooling in the strongly confined direction also cools the

weakly confined direction. Similar approaches have been used in other 3D cooling

schemes [62].

During each cycle of the optical pumping, the atoms spontaneously emit a photon

which we collect using a high-resolution objective made by Special Optics with

numerical aperture of 0.5, allowing us to collect 6.7 % of the total scattered photons.

The objective has a working distance of 24.7 mm and is corrected for our 5 mm thick

fused silica vacuum window. We find a −0.5 spherical aberration corrector (Edmund

Optics #66-758) improves the point spread function. An achromatic doublet with

f = 750 mm gives an imaging system magnification of ∼30 which we verify using

Kapitza-Dirac scattering of a molecular BEC. We block stray light using a 671 nm
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band pass filter with 10 nm width (Edmund optics #65-172) and a short pass filter,

which provides additional rejection for scatter from the powerful infrared beams in

the experiment.

We perform Raman imaging for 800 − 1200 ms and collect ∼1000 photons per

atom using an sCMOS camera, Andor Technology Zyla 4.2, with a quantum

efficiency of 75 % near 671 nm. The measured point spread function (PSF) has a full-

width half-maximum of 900(20) nm, slightly larger than expected for our numerical

aperture [87]. This is sufficient for a numerical algorithm to distinguish occupied and

unoccupied sites, as illustrated in fig. 2.1. Our reconstruction algorithm is similar

to that described in [57], and is also described in the supplement to [70]. The re-

construction allows us to reduce the data from the fluorescence pictures to binary

matrices that are the basis for all further data processing.

After binarization, we identify sites in lattice coordinates, which we define by

(η1, η2) = η1a1 + η2a2 where ai are the lattice vectors. The lattice coordinates are

related to the real space coordinates by the transformation

η1

η2

 =
1

sin(θ2 − θ1)

 1
a2

0

0 1
a1


− sin(θ1) cos(θ1)

sin(θ2) − cos(θ2)


x
y

+

φ2

φ1

 ,(2.1)

where θi is the angle between ai and the x-axis. When the lattice axes are orthogonal,

the lattice and real space coordinates are related by a rotation and scale factor, and

this transformation therefore preserves angles. When the axes are not orthogonal this

is a more general affine transformation, which can include different magnifications

along the two directions and shearing. The parameters θi and ai are only sensitive

to gross beam alignment changes and therefore stable over several weeks. On the

other hands, φi are sensitive to lattice phase changes and must be determined for

each image.
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We estimate fidelity errors due to Raman imaging imperfections by taking 40

consecutive images of the same atom cloud and determine the shot-to-shot differences.

This leads to a tunneling rate during one picture of < 1 % and a loss rate of < 2 %.
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Figure 2.1: Reconstruction visualization. A, A fluorescence image with lattice
sites overlaid, showing occupied sites (circles) and unoccupied sites (points). The field
of view is 46 µm× 46 µm. B, Histogram of detected photons on each site for panel A.
We identify the lower peak with unoccupied sites and the upper with occupied sites.
By fitting Gaussians to these peaks, we determine a threshold value (orange line). We
identify any site with more counts than the threshold as occupied. C, Fluorescence
image showing a band insulator in the center of the cloud, surrounded by a Mott
insulator region. D, Histogram of detected photons for panel C.
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2.3 Laser frequency stabilization

For addressing atoms with near resonant light, which is required for cooling and

trapping atoms in a MOT, absorption imaging, and Raman cooling, it is necessary

to control the laser frequency to a precision much better than the line width of the

atomic transition. In this case, the relevant transitions are the D1 and D2 lines in

6Li, which have line widths of Γ = (2π)6 MHz. Diode laser frequencies can drift on

the order of hundreds of MHz due to thermal fluctuations and vibrations. To achieve

the required frequency stability, it is necessary to control the frequency of the laser

using a servo loop [98, 99].

Before the laser frequency can be electronically controlled, it must be read out

and converted to an electronic signal. The frequency can be read out by comparing

it to a frequency reference, such as an atomic transition, optical cavity mode, or

stable laser. The difference in frequency is then converted to an electronic error

signal. The error signal must give two types of information: a measure of how far

the current frequency is from the desired set-point, and a measure of which direction

the frequency should change to go towards the set-point. An absorption spectra for

an atomic medium such as obtained from Doppler-free spectroscopy does not meet

these criteria because this signal is symmetric above and below the atomic resonance.

Although it provides a measure of how far the frequency is from the set-point, it

is not possible to determine how the frequency should be modified to approach the

set-point from a single measurement.

Instead, most schemes compare the phase of light interacting with the frequency

reference with the phase of light which does not. Many suitable schemes exist, in-

cluding Pound-Drever-Hall locking [100], optical heterodyne spectroscopy [101], and

modulation transfer spectroscopy [102]. If one laser has been stabilized using these

techniques, other lasers can be stabilized to nearby (< ∼10 GHz) frequencies using

offset locking, which relies on measuring the beat note between the lasers frequencies
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on a photodiode and producing an error signal using heterodyne [103, 104] or digital

techniques [105, 106, 107, 108, 109]. In our experiment, we utilize two master lasers,

one locked to the 6Li D2 line to generate trapping and cooling light, and another to

the D1 line to generate light for the Raman imaging. We use modulation transfer

spectroscopy for both, which has the advantage that the error signal offset is indepen-

dent of the laser power [110]. We lock various auxiliary lasers to the masters using

the offset locking scheme described in [104].

Controlling the frequency of an external cavity diode laser (ECDL) in the Littrow

configuration can be accomplished either by changing the current passing through

the laser diode, or by adjusting the angle of the diffraction grating, which can be

done using a piezoelectric actuator. It is often beneficial to control both of these

parameters, as the piezoelectric actuator can correct large frequency fluctuations but

is relatively slow (typically ≤ 10 kHz) whereas the current can correct fast frequency

fluctuations (∼1 MHz or more) but has limited range.

We did not have a preexisting design for a laser lock and therefore we chose to

design our own instead of buying a commercial controller, due to the expense of these

units and the large number of lasers required for our experiment. Our circuit, shown in

fig. 2.2, accepts a user supplied error signal from either the inverting or non-inverting

input. These inputs use Analog Devices AD8429 low noise instrumentation am-

plifiers which have large input impedance, high bandwidth (gain-bandwidth product

15 MHz), and low noise (1 nV/Hz1/2). If both inputs are used simultaneously the two

signals are subtracted from each other, allowing one to be used as a variable set-point

adjustment. An offset voltage is added to the result, allowing the zero point of the er-

ror signal to be adjusted. This error signal is passed to piezo and current stabilization

circuits, and is also available to be read out from an error monitor output.

A major challenge is to ensure the system is stable when operating with both

piezo and current feedback simultaneously. It is possible for the two feedback loops
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Figure 2.2: Laser frequency stabilization servo circuit diagram. Circuit
diagram for the laser frequency stabilization circuit board. Components with values
marked by an asterisk are optional as explained in the text. A voltage signal which
is proportional to the laser frequency enters through either the inverting or non-
inverting input as is added to an offset signal which determines the lock point. The
resulting error signal can be read out through the error monitor path. It is passed on
to the servo sections, which produce appropriate control signals for the laser diode
current and piezo voltage.

to compete if, for example, the zero points of the error signals are not identical. This

is a common problem in circuits based on operational amplifiers (op amps) because

many op amps have significant input offset voltage, which can be as large as ∼10 mV

for certain designs. Some op amp designs are optimized for extremely low input offset

voltage, but these often have other drawbacks. There are two methods of avoiding

this issue. The first is to include an adjustable knob in the circuit to fine tune the
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zero points of the error signal along the two paths so they are the same. The second

is to separate the frequency response of the feedback loops so that the current loop

does not respond to noise at frequencies where the piezo loop has large gain. Similar

issues are discussed in more detail in [111]. Our circuit is flexible enough to allow

both possibilities. The second option is easier, and is the one we typically choose for

our diode lasers. However, when better noise performance is desired the first option

is superior.

The piezo path of our circuit is based on a pair of cascaded PI stages, similar to the

design described in [112]. In typically operation, one PI stage is tuned (e.g. using the

Ziegler-Nichols method [113]) so that its knee frequency is large, and the other has a

knee frequency ∼10 times smaller. This allows the circuit to have large gain near DC

with little phase shift at higher frequency. The PI stages are followed by a notch filter

using the Fliege topology [114]. The notch frequency is adjustable and may be used to

null one of the piezo resonances, which is important for achieving high gain. However,

this is not a scalable solution for piezo systems with many resonances. Those sorts

of systems may be stabilized using digital techniques [115]. A better approach is to

design the piezo to maximize the resonance frequency [116].

To facilitate locking the piezo at a certain position, an offset voltage is added to

the servo signal. Typically, this voltage should be chosen to position the piezo near

the desired lock point. This offset is applied even when the piezo locking section is

switched off. In the off position, an external triangular sweep signal can be added to

the piezo, and the amplitude of the sweep is adjustable using a potentiometer. This

allows the piezo to be swept near a set-point, which is useful for observing nearby

features in the error signal and selecting an appropriate atomic transition. In typical

operation, an atomic transition is selected by iteratively adjusting the voltage set-

point and turning down the amplitude of the sweep. Once the set-point is near the
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zero crossing of the error signal, the lock can be engaged. Typically, the output signal

is passed through a high voltage amplifier before it is applied to the piezo.

The current control consists of a single PI stage implemented using a Texas

Instruments THS4051 op amp with a 40 MHz bandwidth. This op amp design

includes pins which allow the input offset voltage to be adjusted using an external

potentiometer. By tuning this potentiometer, it is possible to avoid competition

between the current and piezo feedback loops. In some situations it is useful to have

no current response at low frequency, and therefore we include an optional high pass

filter at the current output. When this high pass filter is implemented, the PI stage

will tend to saturate due to its large gain at DC. To mitigate this issue, we include an

optional 1 MΩ resistor which gives the PI stage finite DC gain. The output signal is

intended to drive a current modulation, and unlike the piezo path does not include a

voltage set-point. Typically, the laser current is driven by a separate controller with

a modulation input.

In principle the bandwidth of the current path may be pushed to very high fre-

quency, but this requires high-bandwidth, low-noise detection circuitry, minimization

of coaxial cable path lengths, and other high-effort optimizations that are not neces-

sary for achieving the required stability to create a MOT.

2.4 Observables

The Raman imaging technique is sensitive to the parity of the on-site atomic density.

Using various spin manipulation techniques, we can measure a variety of other on-site

density quantities, which are described in detail in this section. A single measure-

ment corresponds to one projection of the many-body wave function onto a certain

real space density basis. By making many measurements, we infer expectation values

for densities and density correlations. Although we have access to many different
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observables, we cannot directly measure correlations between different types of ob-

servables because each measurement is destructive. In some special cases, these sorts

of correlations can be extracted from several different measurements.

2.4.1 Singles density

When near resonant light is incident on a single tightly confined lattice site containing

multiple atoms, light-assisted collisions occur leading to pairwise atom loss. For this

reason, the natural observables Raman imaging provides access to are the atomic

singles density and singles-density correlations defined by

nsi = ni↑ + ni↓ − 2ni↑ni↓ (2.2)

Cs(d) =
〈
nsin

s
i+d

〉
− 〈nsi 〉

〈
nsi+d

〉
. (2.3)

The singles density is closely related to the local moment, which is defined by mz
i =

(ni↑ − ni↓)2. These two quantities are identical for fermions. One limitation of mea-

suring the singles density is that both doublons and holes appear as empty sites, and

we cannot distinguish between them.

2.4.2 Single-species density

The single-species densities ni↑ and ni↓ and correlations,

Cσ(d) = 〈niσni+dσ〉 − 〈niσ〉 〈ni+dσ〉 (2.4)

are also accessible in the experiment. Raman imaging drives transitions between

different spin states, and therefore is not directly sensitive to spin. To measure this

quantity we ramp the lattice depth to 60 Er in 100 µs and ramp the magnetic field to

595 G. Then we shine light resonant with only one of the spin states on the atoms for
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30µs. The length of this pulse was determined by observing atom loss for different

pulse lengths. The atom loss curve exhibits two well-separated time scales, which we

interpret as resonant heating and off-resonant heating of the two spin states, and fit

with the sum of two decaying exponentials [69]. We find time constants 4.5(2)µs and

1.7(5) ms, from which we estimate that 0.2 % of resonantly blown atoms remain, and

up to 2 % of the off-resonant state atoms are ejected.

This is possible because the lithium ground and excited states are in the high-field

(Paschen-Back) regime at moderately large fields and thus the high-field seeking states

have nearly closed cycling transitions 2S1/2 |mj = −1/2 mi〉 to 2P3/2 |mj = −3/2 mi〉

which are also optically resolved. However, these transitions are not perfectly closed

and the resonant pulse also pumps some of state |1〉 (|2〉) atoms into state |5〉 (|4〉).

For more discussion of 6Li branching ratios versus field, see appendix A.

We take advantage of the cycling state |3〉 = |mj = −1/2,mi = −1〉 to calibrate

the pumped fraction. To measure the probability of pumping |1〉 into |5〉 we prepare

a |1〉 − |3〉 Mott insulator and compare the results blowing both states with blowing

only state |3〉. We find that we pump 0.8(1) % of the atoms from |1〉 to |5〉. We

separately measured the probability of pumping |2〉 into state |4〉 to be 1.2(1) % by

preparing a |1〉− |2〉 Mott insulator and comparing blowing both states with blowing

|2〉 only.

We find this procedure ejects one spin state without affecting the other with high

fidelity. This situation is in contrast to the behavior observed in [68, 69], where

resonant light causes both spin states to be lost. We attribute the absence of these

light-assisted collisions in our system to the much weaker axial confinement used (see

section 2.2).
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2.4.3 Single-species singles density

By first removing doublons and then performing spin resolved detection, the single-

species singles densities are accessible. These are defined by

nsiσ = niσ − ni↑ni↓ (2.5)

Cs,σ(d) =
〈
nsiσn

s
i+dσ

〉
− 〈nsiσ〉

〈
nsi+dσ

〉
. (2.6)

We again prepare the system in a 60 Er lattice, but now before performing resonant

pushing we “hide” doublons by ramping slowly across one of the narrow Feshbach

resonances (see section A.2). Doublons are either lost or transferred to deeply bound

molecules that are not observed in Raman imaging. Finally, we remove the undesired

spin state using resonant light.

To characterize the fidelity of doublon hiding, we first prepare a band insulator.

We take images with neither doublon hiding nor blowing to determine the number

of singles in the band insulator. We then compare this to the number of singles we

observe after performing doublon hiding and removing one of the spin states with a

blowing pulse, which leaves behind single atoms on sites where the doublon hiding

failed. We find a doublon hiding fidelity of 90(3) %.

2.4.4 Doublon density

The doublon density is accessible through rf techniques. The doublon density and

density correlations are given by

di = ni↑ni↓ (2.7)

Cd(d) = 〈didi+d〉 − 〈di〉 〈di+d〉 . (2.8)
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Again we prepare the gas in a deep lattice and ramp the field to 595 G. We can

selectively transfer doublons using two different schemes. One, we can rely on the

strong repulsive interaction to spectroscopically resolve doubly and singly occupied

sites. Two, we can take advantage of the tight axial confinement from the accordion

lattice by applying an rf pulse to transfer |1〉 atoms to state |2〉 and add two vibrational

quanta. As momentum must be conserved in an rf transfer, this process can only

occur on sites where there are two atoms. This technique is closely related to the

trap sideband resolved spectroscopy discussed in [94]. We apply this second method

in the experiment because the accordion lattice trapping frequency is larger than

the interaction energy, leading to larger separation between the singly and doubly

occupied site resonances. After the rf transfer, we push out both states |1〉 and |3〉.

The remaining |2〉’s correspond to sites which were doubly occupied.

2.4.5 Derived observables

The four observables described in the previous section can be combined to obtain

other interesting correlations which are more suited to illuminating certain kinds of

physics.

The spin correlations can be obtained by combining the singles correlations and

the single-component singles correlations, [67, 68, 69, 70]

Szi =
1

2
(ni↑ − ni↓) (2.9)

Cz
spin(d) = 4

(〈
Szi S

z
i+d

〉
− 〈Szi 〉

〈
Szi+d

〉)
(2.10)

= 2 [Cs,↑(d) + Cs,↓(d)]− Cs(d). (2.11)

Correlations between up spins and down spins, which are characteristic of inter-

acting systems, can be inferred from the spin correlations and the single-component
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density correlations,

C↑↓(d) = 〈ni↑ni+d↓〉 − 〈ni↑〉 〈ni+d↓〉 (2.12)

C↑↓(d) + C↓↑(d) = C↑(d) + C↓(d)− Cz
spin(d). (2.13)

Density correlations can be inferred from a similar combination of spin correlations

and single-component density correlations

Cn(d) = 〈nini+d〉 − 〈ni〉 〈ni+d〉 (2.14)

= C↑(d) + C↓(d) + C↑↓(d) + C↓↑(d) (2.15)

= 2 [C↑(d) + C↓(d)]− Cz
spin(d). (2.16)

These derived correlators require measuring many different correlations to de-

termine, and are thus more experimentally “expensive” than the directly accessible

quantities. Nevertheless, they are frequently of great interest and reveal information

which is not apparent from the component correlators.

2.4.6 Correlator statistical uncertainty

Quantifying the uncertainty in measured correlators is important to draw scientific

conclusions, but due to correlations which exist between 〈ninj〉 and 〈ni,j〉, we cannot

apply näıve uncertainty analysis to the correlation functions discussed above. Here

we use ni as a stand in for any of the previous density observables discussed in the

previous section. To estimate the uncertainty, we note that the correlation functions

can be recast as the covariance between the variables ni and nj, 〈ninj〉c = Cov(ni, nj).

The expectation value of the covariance we calculate in the experiment is therefore

the sample covariance, S. The uncertainty in the sample covariance is related to its
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variance which can be calculated

Var[S(ni, nj)] =
1

N

(
δ2 +

1

N − 1
Var(ni)Var(nj)−

N − 2

N − 1
Cov2(ni, nj)

)
.(2.17)

As the number of measurements, N , becomes large, S → 1
N

(
δ2 − Cov2(ni, nj)

)
where

δ2 = 〈(ni − 〈ni〉)2(nj − 〈nj〉)2〉.

Bootstrap techniques [117] yield similar error estimates, but are more computa-

tionally expensive.

2.4.7 Correlator systematic uncertainties

In addition to statistical uncertainties, the various density and correlator expectation

values are affected by systematic effects such as atom loss and imperfect resonant

pushing or radiofrequency manipulation. We estimate the impact of various imaging

imperfections here. Related discussion of similar effects can be found in [68].

Atoms that are lost from the trap after tunneling dynamics are frozen can reduce

the measured correlations. We estimate this effect by introducing the probability

of an atom being lost before imaging, εl, and the probability εr that we identify an

empty site as occupied. εr is a result of both tunneling and recapture of atoms during

imaging. We find

ñsi = nsi (1− εl) + (1− nsi )εr (2.18)

Cs(d) =
C̃s(d)

1− 2 (εl + εr)
, (2.19)

to first order in ε. Using the estimates from section 2.2 for imaging loss rate, tunneling

rate, and loss during pinning hold times leads to an expected multiplicative reduction

in measured correlators to 1 − 2 (εl + εr) = 0.92(2) of the actual values. Since the
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imaging procedure is not affected by differences in sample preparation, such as lattice

depth or spin removal pulses, this correction applies to all measured correlators.

Imperfections in the spin imaging process can also affect correlators. The blowing

pulse off-resonantly ejects an atom in the spin state of interest with probability εσ

and fails to eject an atom in the other spin state with probability εfσ, leading to

ñiσ = niσ(1− εσ) + ni,−σεfσ. (2.20)

A similar expression holds for the nsσ. The errors considered here are due to the

resonant blowing pulses and do not affect the value of Cs. However, they do affect

the Cs,σ and Cσ. To first order in ε, the reduction in these correlators is

Cσ(d)− C̃σ(d) = 2εσCσ(d)− εf,σ
[
〈niσni+d,−σ〉c + 〈ni,−σni+d,σ〉c

]
. (2.21)

A similar expression holds for Cs,σ with the replacement niσ → nsiσ.

Imperfect doublon hiding affects the Cs,σ correlators. If we fail to hide a doublon

with probability εd, we find

ñsiσ = nsiσ + εddi (2.22)

Cs,σ(d)− C̃s,σ(d) = −εd
(
〈nsidi+d〉c +

〈
din

s
i+d

〉
c

)
. (2.23)

Imperfect doublon transfer reduces the observed doublon correlations. Suppose

that we fail to transfer doublons with a rate εdf and we unintentionally transfer a

spin-up or down atom on a singly occupied site with rate εs. We find,

d̃i = (1− εdf )di + εs(ni↑ + ni↓) (2.24)

Cd(d)− C̃d(d) = 2εdfCd(d)− εs
[〈
din

s
j

〉
c

+ 〈djnsi 〉c
]
. (2.25)
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In most circumstances, the effect of the mixed correlators (e.g.
〈
din

s
j

〉
) are small

and we only consider the effect of the terms proportional to the given correlator itself.

2.5 Optical lattice
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Figure 2.3: Lattice geometry. A, Lattice beams are shown in pink, mirrors in
gray and lenses in blue. All four lattice beams cross at the origin and can interfere
depending on the polarization angle α. The incoming beam makes an angle of θ/2 with
the x-axis. B, Lattice potential shown along lines of high-symmetry in the unit cell
for polarization angles α = 0° (red), 45° (blue), and 90° (black). The global minimum
occurs at position (0, 0), whereas a local minimum occurs at position (λ/2

√
2, λ/2

√
2).

C, 2D lattice potentials for α = 0° (left), 45° (center), and 90° (right). Black lines
show the path traversed for the plots in panel B. The leftmost panel is the four-fold
interfering lattice with lattice axis along the coordinate axes. As the laser polarization
is varied, the lattice develops a second local minimum (center panel), and the local
minimum becomes equivalent to the global minimum and the lattice has shorter
periodicity and axes diagonal to the coordinate axes (right panel).
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Figure 2.4: Lattice potential non-idealities. A, Lattice potential along high-
symmetry directions in the unit cell, including the path shown in fig. 2.3C (red) which
travels from (ax/2, ay/2) to (0, 0) to (ax/2, 0), and the complementary path for the
y-direction (black) which passes through (ax/2, ay/2), (0, 0), and (0, ay/2). Dotted
lines delineate the edge of the unit cell along the lattice axes. B, Lattice potential
along the x (light-red line) and y (gray line) directions and the (purely real) Wannier
function (red and black) for lattice depth 5 Er. The edges of successive unit cells
(dotted lines) illustrate the different lattice constants along the two directions.

Precise knowledge of the optical lattice potential is required for comparing the

experimental results in this thesis to theory. In this section, we discuss the optical

lattice in detail. The optical lattice is a 2D square lattice formed by four interfering

passes of a single vertically polarized beam at 1064 nm, as illustrated in fig. 2.3A.

Compared to the commonly used lattice configuration created by two non-interfering

orthogonal retro-reflected beams, this lattice has a spacing a factor of
√

2 larger and a

much larger depth because of the 4-fold interference, features that facilitate quantum

gas microscopy. Furthermore, the tunneling barrier between sites is the full lattice

depth, compared with half the depth in the two-beam setup.
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The lattice geometry may be changed by adjusting the angle the linear polarization

makes with the vertical, α [118]. For vertical polarization, α = 0, all four passes

interfere and the resulting potential is non-separable with lattice axes along the x

and y axes and spacing λ/
√

2. As the polarization is adjusted away from α = 0, the

lattice exhibits a double well structure with the global minimum at (x, y) = (0, 0) and

a local minimum at (λ/2
√

2, λ/2
√

2). For α = 90° these two minima are equivalent,

and the lattice potential is separable with lattice basis vectors along the diagonals

and spacing λ/2.

We suppose the lattice is red detuned and the first two passes travel in the xy

plane at angles ±θ/2 to the x-axis and that the electric field of the retro-reflected

beam is attenuated by a factor of r. The lattice principal axes are along the x- and

y-axes independent of the angle θ, and we choose the phase of the lattice so that the

minimum occurs at the origin. We write the lattice potential in terms of its Fourier

components,

V (r) =
∑
K

Vke
iK·r (2.26)

where the Fourier components for polarization α = 0 are given in table 2.2 and for

arbitrary polarization in table B.1.

Kx Ky VK

0 0 −Vo 2(1+r2)
4(1+r)2

±2k cos(θ/2) 0 −Vo 2r
4(1+r)2

0 ±2k sin(θ/2) −Vo 1+r2

4(1+r)2

±2k cos(θ/2) ±2k sin(θ/2) −Vo r
4(1+r)2

±2k cos(θ/2) ∓2k sin(θ/2) −Vo r
4(1+r)2

Table 2.2: Four-fold lattice Fourier components for α = 0.
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We can also write the potential as

= −Vo
(1 + r2 + 2r cos [2k sin(θ/2)x]) (1 + cos [2k cos(θ/2)y])

2(1 + r)2
, (2.27)

where V0 is the full lattice depth and k = 2π/λ. Note that eq. 2.27 differs from

the expression given in [70] by a phase factor to ensure that the potential minimum

occurs at (x, y) = (0, 0).

For θ = 90° the lattice constant is λ√
2
. Deviations from this condition preserve the

lattice axes but result in different spacing along the two directions,

ax =
λ

2 cos(θ/2)
(2.28)

ay =
λ

2 sin(θ/2)
(2.29)

θ = 2 arctan

(
ax
ay

)
. (2.30)

This spacing asymmetry results in asymmetric tunneling along the two directions

which we compensate by adjusting the attenuation of the retro-reflected beam. We

display the effect of these non-idealities on the potential (fig. 2.4A,B) and the Wannier

function (fig. 2.4B), for θ = 91.6267°, which is the lattice angle inferred from ax and

ay determined during binary reconstruction (see section 2.2), and r = 0.6, which is

near the value that equalizes the x- and y-direction tunneling rates for lattice depth

5 Er.

For a lattice with equal spacing, we define the recoil energy in terms of the mag-

nitude of the reciprocal lattice vectors, |b| by Er = ~2
2m

(|b|/2)2. For lattices with

unequal spacing, we take instead the geometric mean of the reciprocal lattice vectors

bmean =
√
|b1||b2|. However, here we will express all quantities in terms of the recoil

energy of the ideal lattice, i.e. θ = 90°, Er = ~2
2m

2π2

λ2
, which is 14.65 kHz for 6Li and

λ = 1064 nm.
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Figure 2.5: Lattice parameters versus depth. A, Lattice nearest-neighbor
tunneling energy (red), diagonal (blue), and second neighbor (gray) determined from
a Wannier function calculation. We verify these values by comparing them with
the values obtained by fitting the shape of the band structure. B, Ratio of the
Wannier interaction integral,

∫
dxdy |w(x, y)|4, over the hopping. Equivalently, this

is (U/t)/g̃, where g̃ = g/Era
2 and g = 4πas~2

m

√
mωz
h

. This quantity allows U/t to be
easily calculated for various atomic parameters (see text).

The tunneling and interaction energies can be determined by solving a single-

particle problem (see appendix B). For lattices deeper than a few recoil energies,

tunneling between sites is strongly suppressed with distance and we can approximate

the potential using a tight-binding model. We plot the first few tunneling energies in

fig. 2.5A determined from a Wannier function calculation. We confirm these results

by comparing them with tunneling parameters obtained from fitting the dispersion of

the ground band. We also extract the interaction energy from the Wannier functions

and plot the ratio U/t up to a factor of g̃ = g/(Era
2), where g = 4πas~2

m

√
mωz
h

in

fig. 2.5B. The connection between the Wannier integral and the interaction energy in

quasi-2D is given by U = g
∫
dxdy |w(x, y)|4 (see section B.4).
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2.5.1 Depth calibration

Knowing the optical lattice depth is important both as a tool for aligning the lattice

potential and because it can be used to determine the tunneling rate from a band

structure calculation. This approach is useful because measuring the tunneling rate

directly is more challenging. In early experiments, we calibrated the lattice depth

using Kapitza-Dirac scattering (see e.g. [119]) of a molecular BEC. We aligned the

potential by monitoring the strength of scattered orders, a process we found to be

time consuming and imprecise. It is easier to align the lattice beams by imaging the

position of the atoms along vertical and horizontal imaging axes and then calibrate

the depth using amplitude modulation in a deep lattice. The lattice depth at lower

intensity can be estimated by scaling this measured depth.
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Figure 2.6: Lattice intensity modulation spectroscopy. A, Atomic density
versus modulation frequency (points) and a three Lorentzian fit (line) for atoms in
the center of the trap, r = 0−8 sites (upper, blue) and at the edge r = 37.5−38.5 sites
(lower, black). B, Experimental lattice depth obtained from locally resolved intensity
modulation spectroscopy versus spatial position (points) and a Gaussian fit to the
experimental result (line).
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We perform amplitude modulation spectroscopy by combining the lattice intensity

stabilization servo output with a modulation signal using a bias-T. We work in a

deep lattice, ∼60 Er to easily resolve different bands, and measure atom loss versus

frequency, scaling the modulation time to keep the number of periods fixed. We

typically observe loss features due to transitions between the s-band and the three

d-bands, and fit these to Lorentzians to determine their centers and widths, as shown

in fig. 2.6A. Then, we determine the lattice depth Vo and the retro-reflection electric

field amplitude attenuation factor r by performing a least squares fit to the band

gaps, determined from a band structure calculation, with the Lorentzian centers.

Due to the Gaussian shape of the lattice beams, the depth of the lattice varies

away from the beam center with a Gaussian envelope. We measure this variation

in depth using locally resolved intensity modulation spectroscopy (fig. 2.6B). The

relatively large trap variation is caused by the small 70µm waist beams we employ.

The small beam waist is necessary to obtain sufficient trapping frequency for efficient

Raman imaging. However, it leads to several undesirable effects in the science lattice

configuration, including strong variation of the atomic density versus position and

variation of U/t across the trap.

2.5.2 Phase stability

The optical lattice potential, eq. 2.27, is stable against changes in the beam path

lengths without active phase stabilization [118]. This is because, compared with a

four beam lattice derived from two separate lasers with the same polarization (which

requires phase stabilization), this topology has one fewer phase degree of freedom.

For this lattice we have three degrees of phase freedom which are the phase of

the incoming beam (which can be neglected), the path length between the first and

second passes, l, and the path length from the second pass to the retro-reflection
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Figure 2.7: Lattice phase drift. A, Lattice phase φ1 inferred from reconstruction
after phase unwinding over the course of 8 hours. The phase drifts slowly, at most a
few lattice sites per hour. B, Lattice phase φ2.

mirror lr. We find that the potential V can be written

V (x, y) = Vo(x− δl − δlr, y − δlr), (2.31)

where Vo is the potential with zero phase factors. We find that changing the path

length between the first and second pass by δl shifts the lattice along the x-direction

by δl, whereas changing the path length to the retro-reflection mirror by δlr shifts

the lattice along the x+ y-direction by length
√

2δlr.

We observe long term phase drifts in the lattice potential by using our recon-

struction algorithm to determine the quantities φ1 and φ2, defined by eq. 2.1, from a

sequence of fluorescence images. Over the course of 8 hours, the position of the lattice

minimum drifts by a few sites, with typical drift rate less than 2 sites/h (fig. 2.7). The

slow scale of the drift is consistent with thermal effects, which can change the path
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lengths l and lr. Abrupt changes in the lattice phase may be caused by adjusting the

focus of the camera. This phase drift is not important for the experiments consid-

ered in this work, but might pose difficulties for experiments that require single-site

addressing.

2.5.3 Pointing noise
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Figure 2.8: Optical lattice pointing stability. A, Beam x-position versus shot
number for the MOPA laser (red) and the laser after being fiber coupled (blue). B,
Beam y-position. The beam position is significantly more stable after being coupled
into a fiber.

In addition to phase drift of the lattice, we observe shot-to-shot fluctuations in

the center of mass of the atom cloud with typical standard deviation 1-2 sites. This

effect is significant enough that it is difficult to e.g. flatten the optical potential using

the DMD. Due to this shaking it is possible to produce a potential that is flat on

average, but individual shots have densities concentrated to one side or anther. This

effect appears to originate from positional instability of the laser used to generate the
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lattice. We quantify the shaking amplitude by focusing the beam to a waist of 175 µm

using a test setup and imaging the position on a Allied Vision Technologies

Guppy F-080B CCD camera with a repetition rate of 4 Hz and imaging exposure

time of 1 ms. The total beam path is ∼1 m, similar to that used in the experiment.

We determine the beam center using a Gaussian fit, and find a standard deviation of

about 2 µm in the position (fig. 2.8), which is already smaller than the 4.65µm camera

pixels. To verify this effect is due to beam shaking, we compare these results with

measurements taken after coupling the beam into a fiber. The standard deviation in

position of the fiber coupled beam is less than 0.3 µm, similar to the fitting uncertainty

due to the spatial digitization of the image.

2.5.4 Intensity noise

Reaching the low temperatures required to access interesting physics in the experi-

ment requires mitigation of optical intensity noise, which causes heating in optical

traps. Intensity noise heating is characterized by an exponential energy increase with

rate constant Γ. For atoms in a harmonic trap, this rate is [120],

Γ =
π

2
ω2SPP (2ω)

〈P 〉2
, (2.32)

where ω is the harmonic trap frequency, 〈P 〉 is the mean optical power, and SPP is

the one-sided power-spectral density of the optical power.

For a noisy signal P (t), the one-sided power spectral density is given by

SPP (ω) = 2
〈
|P (ω)|2

〉
(2.33)

=

∫ ∞
0

dτ 〈P (t)P (t+ τ)〉 e−iωτ . (2.34)
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where P (ω) is the Fourier transform of P (t) over a finite time T given by

P (ω) =
1√
T

∫ T

0

dt P (t)e−iωt. (2.35)

Eq. 2.34 expresses the power spectral density as the Fourier transform of the autocor-

relation of the noisy signal, a result known as the Wiener-Khinchin theorem, which

provides a convenient method of calculating this quantity. If P is an optical power

signal, the power spectral density has units of W2/Hz. However, it is more common

to quote
√
SPP (ω) in units of W/Hz1/2.
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Figure 2.9: Optical lattice intensity noise spectra. Lattice intensity noise
for depths of 8.4 Er (black) and 50 Er (blue). Minimum RIN values are obtained
at frequencies ranging from several hundred Hz to several kHz, on the range of the
tunneling rate and Hubbard interaction.

As eq. 2.32 demonstrates, the fractional power fluctuations are the relevant quan-

tity to assess heating processes. We will quote these in terms of the residual intensity
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noise (RIN) defined by

RINPP (ω) =
SPP (ω)

〈P 〉2
, (2.36)

which has units of 1/Hz. We more typically quote 10 log10(RIN) in units of dB/Hz.

The fundamental lower limit on the obtainable RIN for optical power comes from shot

noise. For an optical signal with frequency ν, Spp(ω) = 2hν 〈P 〉, giving RIN = 2hν
〈P 〉 .

We assess the noise performance of the optical lattice intensity stabilization (see

section 2.6) by measuring the intensity noise on a Thorlabs PDA36A amplified

photodiode, similar to the setup discussed in [121]. The photodiode produces a cur-

rent which is proportional to the incident optical power. We then measure a voltage

across a resistor using an SR770 Fourier transform network analyzer (Stanford Re-

search Systems). The voltage signal is proportional to the intensity signal, and

therefore will have the same RIN as long as intensity noise dominates sources of elec-

tronic noise, such as Johnson noise in the photodiode and detection circuitry. The

photodiode noise sources are quantified in terms of the noise equivalent power (NEP),

which is often massaged to produce a single number on a data sheet by defining

NEPspec =

√
SII

maxλ[R(λ)]
, (2.37)

where R is the photodiode sensitivity in A/W and SII is the total electronic noise writ-

ten as a current spectral density. The NEP at a given wavelength is then NEP(λ) =

maxλ[R(λ)]/R(λ) × NEPspec. The PDA36A is specified to have NEP(1064 nm) =

4.55× 10−11 W/Hz−1/2.

We reach minimum RIN for the optical lattice intensity near 300-5000 Hz of

−135 dB/Hz (fig. 2.9). Minimizing noise in this frequency range is critical because

the Hubbard energy scales t and U are typically of a similar order. We find that the

RIN improves at larger intensities, as expected. At beam power 80 mW and lattice
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depth 8.4 Er the minimum RIN is −135 dB/Hz, whereas for 450 mW or 50 Er the min-

imum RIN is −140 dB/Hz (fig. 2.9). These values are similar to what was achieved in

[121]. The shot noise limits for these two powers are −173 dB/Hz and −180 dB/Hz

respectively. The photodetector noise floor is expected to be smaller than the shot

noise limits, corresponding to RIN’s of −185 dB/Hz and −200 dB/Hz respectively.

2.6 Laser intensity stabilization

The laser intensity stabilization discussed in section 2.5.4 is accomplished using an

acousto-optic modulator (AOM) driven with variable rf power, which is controlled by

servo electronics. The servo electronics detect the current laser intensity, compare it

with the desired set-point, and adjust the rf power to correct any deviation.

We developed a home built intensity stabilization servo circuit based on a pair

of cascaded PI stages and a transistor emitter follower output driver stage, shown in

fig. 2.10. To avoid integrator windup, we also include MOSFET based relays which

short the PI stages when they receive a TTL signal. This circuit is relatively simple

and flexible enough to be used not only for power stabilization, but also magnetic

field stabilization and other general purpose use in the lab.

The servo is designed as follows. A set-point voltage and the signal to be stabilized

are connected to differential amplifier inputs. One input is inverting, and other is non-

inverting, therefore adding the outputs together subtracts the set-point and signal,

creating the error signal. The error signal is passed to a pair of cascaded PI stages.

The PI stage frequency response is adjustable using a pair of potentiometers and

switchable capacitors. The output of the PI stage is fed to a transistor emitter

follower driver stage, capable of supplying moderate current.

The servo voltage signal is sent to either a voltage variable attenuator (VVA) or

a mixer which modulates the rf intensity. For non-critical applications, we use VVAs
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Figure 2.10: Laser intensity stabilization servo circuit diagram. Circuit
diagram for the laser intensity stabilization circuit board. On the left are the inverting
and non-inverting input differential amplifiers. These are summed, and the error
signal is passed to the PI stages. The output stage is an emitter follower driver
which can supply more current than the op amps. The 330 Ω collector resistor limits
the current, and should be selected based on the current limit of the component
being driven to prevent damage. Components with values marked by an asterisk are
optional.

which have the advantage that they can suppress the rf power more than 40 dB, but

typically have low bandwidth (< 100 kHz) and small input impedance. Driving a

VVA in the on state can require upwards of 20 mA, which is more than some op amps

can supply. This current is supplied by the driver output stage of the intensity servo.

Mixers provide less power suppression, but are much faster than VVAs.

The noise suppression performance of our laser intensity servos are limited by the

maximum achievable bandwidth of the feedback loop. The bandwidth is fundamen-

tally limited by the speed of sound in the AOM crystal to about 300-400 kHz, meaning

noise can be efficiently suppressed at frequencies up to a few tens of kilohertz. Faster

servo response requires a power modulation device which is not based on acoustic

waves, for example a Pockels cell based on an electric field modulating the phase

delay through a crystal.
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2.7 Spatial light modulator setup
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Figure 2.11: DMD optical setup. A, DMD optical system including intensity
stabilization monitors, demagnification optics, and the imaging system. B, Coherent
650 nm light generation setup. A home built ECDL seeds a tapered amplifier. Inten-
sity of the light is controlled by an AOM and servoed using the photodiodes shown
in panel A.

We use a digital mirror device (DMD) as a spatial light modulator (SLM) to

project arbitrary potential patterns on the atoms. The DMD is arranged in an imag-

ing plane configuration because we typically project patterns with large spatial fre-

quencies, and the imaging plane configuration is more efficient than the Fourier plane

configuration for this application [122, 123, 124].

To produce the optical potentials we use up to 15 mW of 650 nm coherent light de-

rived from a tapered amplifier (Eagleyard EYP-TPA-0650-00250-2007-CMTO02-

0000) seeded by a home built external cavity diode laser (ECDL) using a Toptica

LD-0650-0040-AR-2 laser diode. The ECDL is based on the design described in [125].

The laser system used to produce this light, shown in fig. 2.11B, is located on a sepa-

rate table from the experiment. The light is coupled into an optical fiber and guided
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to the DMD setup, shown in fig. 2.11A. We illuminate the DMD with a Gaussian

beam of waist ∼1 cm, which is intensity stabilized by an Intraaction model ATM

1141A1 AOM.

We use a Texas Instruments DLP Discovery 4100 development kit with a

DLP7000 DMD. The mirrors are arranged on a square grid with a mirror separation

of a = 13.68 µm. The mirrors swivel at 45° to the grid axis. In the on (off) state the

normal of the micromirror plane makes an angle of 12°(−12°) with the underlying

device. We mount the DMD at a 45° angle compared to the grid axis so that the

micromirrors swivel in a plane parallel to the optical table.

The path of the incoming light forms an angle of θin = 30° with the normal to

the DMD and we utilize the m = 6 diffraction order leading to an outgoing angle of

θout = 6°. These choices satisfy both the diffraction condition and the Blaze condition

which are

m =
d

λ
[sin(θin)− sin(θout)] (2.38)

θout = θin − 2θBlaze, (2.39)

where d = a/
√

2 = 9.8 µm is the distance between mirrors along horizontal direction

and θBlaze = 12°.

We image this light onto the atoms using two stages of demagnification. First, we

demagnify the DMD image by a factor of 5 using a telescope formed by the 500 mm

and 100 mm lenses shown in fig. 2.11A. These two lenses form a 4f imaging system

with the DMD in the imaging plane. The Fourier plane of this imaging system may

be used to spatially filter the light pattern. Next we combine the DMD projection

path with the imaging path on long-pass dichroic mirror, Semrock BrightLine Di03-

R635-t1. The imaging system demagnifies the light by an additional factor of 30.

A square of approximately 8 × 8 mirrors determines the potential at a single lattice
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site. We produce binary images from continuous potential profiles using the Floyd-

Steinberg error diffusion algorithm [126]. The imaging system spatially filters the

binary image, resulting in a smooth potential at the atoms.

We can either project a single static pattern, or change the pattern dynamically

with a maximum frame rate of ∼20 kHz. When running in dynamic mode the DMD

displays successive images after receiving a trigger, and it is therefore possible to use

arbitrary timings for each frame. By default, each image is displayed for a fixed time

and then the DMD reverts to the off state. We use the ALP-4.2 API “uninterruptible

binary mode” to keep the image on the DMD until the next trigger. The DMD

transitions between images in approximately 10µs. During this time, all mirrors go

to the off state, and then the mirrors needed for the next image are turned to the

on state. The motion of the mirrors is underdamped, and we observe the mirrors

bouncing by measuring diffracted light on a photodiode.

The DMD setup is programmed by the factory to cycle all mirrors from their

initial position to the off position and back every 10 s to prevent any mirror from

becoming stuck. This time is sufficiently long compared to the ∼100 ms that the

DMD is used for in the experiment that such events rarely affect the atoms. In some

DMD devices the refresh rate is much faster and requires significant effort to modify

[127].

We can regard the imaging system as a coordinate transformation between the

object space with coordinates (xo, yo) aligned with the DMD and the image space with

coordinates (xi, yi) aligned with the camera sensor. The transformation between these

coordinates involves a rotation parameterized by angle θ between the coordinate axes,

a scale factor S, and a shift in origin. It is given by

xo
yo

 = T

xi
yi

 =
1

S

cos(θ) − sin(θ)

sin(θ) cos(θ)



xi
yi

−
cx
cy


 . (2.40)
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Composing this transformation with eq. 2.1 gives the transformation between the

DMD coordinate space and the lattice coordinate space.

The relationship between the electric field at the DMD, Eo(xo, yo), and the electric

field at the atoms is given in terms of the point-spread function of the imaging system,

P , and the object to image space coordinate transformation, T ,

E(xi, yi) =

∫
dxodyo Eo(xo, yo)P

T
xi
yi

−
xo
yo


 . (2.41)

To determine the relationship between the intensity pattern at the DMD and the

atoms, we must distinguish two different regimes. In the first, the size of the point-

spread function is less than the size of a DMD pixel. In this case, we only have a

smooth intensity pattern if we coarse grain the intensity distribution in the imaging

plane. Then the coarse grained intensity is proportional to the density of “on” pixels.

In the second regime, the size of the point-spread function is greater than the size

of a single pixel. In this case, light from different pixels interferes, and the intensity

in the imaging plane is proportional to the square of the number of “on” pixels. We

operate our setup in the second regime, and we account for this fact when generating

DMD patterns to be projected on the atoms.

2.8 Bias magnetic field stabilization

Many atomic properties are dependent on the magnetic field intensity, including the

energy difference between hyperfine states and scattering properties of various spin

mixtures. Typical ambient magnetic field fluctuations in the lab are on the order

of 1 mG. To perform experiments where these field fluctuations cause significant

changes in atomic parameters, it is necessary to stabilize at least one component of

the magnetic field.

48



G

S D

Servo

B coil

B ambientFLC100

10-7

10-6

10-5

10-4

10-3

10-2

10-1 100 101 102 103

P
S

D
 (V

rm
s 

/ 
H

z)

Frequency (Hz)
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

-4 -3 -2 -1  0  1  2  3  4

Fi
lli

ng

Frequency (KHz)

A B

C

Figure 2.12: Magnetic bias field stabilization setup. A, Schematic of the bias
magnetic field stabilization setup. B, Power spectral density of the fluxgate sensor
signal for the unstabilized field (black), stabilized field using a single integrator (dark
blue), and stabilized field using two integrators (light blue). The servo improves the
noise performance by roughly an order of magnitude for frequencies below 100 Hz. C,
Rf spectra taken both with (blue) and without (black) magnetic field stabilization.
When the stabilization is on, the spectral line narrows and the variance in the atom
transfer decreases.

These issues arise most commonly when working at low bias fields, < 1 G, where

the background magnetic field fluctuations are fractionally much larger than when

working at hundreds of Gauss. Although many 6Li experiments work in the vicinity

of the broad Feshbach resonance, this atom has a number of desirable scattering

properties at small bias fields, < 200 mG. Here the scattering length a13 becomes

large [128], while the other scattering lengths among the lowest three hyperfine states

are negligible. However, the |1〉 − |2〉 and |2〉 − |3〉 splittings are field sensitive, with

approximate slopes 0.93 MHz/G and 1.87 MHz/G respectively at 100 mG.

Reaching stable bias fields which are smaller than Earth’s field, ∼500 mG, requires

control over all three field directions and active stabilization. To produce a bias

field in the z-direction, it is necessary to null the ambient fields in the x- and y-
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directions. We do this using two pairs of coils driven by stable current sources.

Even at 100 mG the quadrature addition of field components suppresses the effect of

fluctuations in these directions. We then actively stabilize the field in the z-direction.

We measure the z-field using a Stefan Mayer FLC100 fluxgate sensor [129] positioned

above the vacuum chamber, and control it using a Helmholtz coil of radius ∼0.5 m and

a home built servo (described in section 2.6) driving an n-channel power MOSFET

(STMicroelectronics STW20NM60FD) as shown in fig. 2.12A.

This geometry is susceptible to several undesirable effects. The fluxgate sensor

is far from the atoms and thus only fields which are uniform in space can be nulled.

Furthermore, the sensor is sensitive to fringing fields from the x- and y-coils, and as

such will respond to any current noise from these supplies.

We assess the stabilization at the sensor position by measuring field noise on

the fluxgate sensor using an SR770 Fourier transform network analyzer (Stanford

Research Systems). We find this setup suppresses the noise by about one order

of magnitude in the frequency range 1-100 Hz (fig. 2.12B). Achieving higher low-

frequency gain to suppress this noise further requires increasing the bandwidth of our

sensor, which is about 1 kHz.

We characterize the field stability at the position of the atoms by measuring the

width of an rf transition between two hyperfine states. We determine the magnetic

field fluctuations by measuring the width of a series of rf spectra with increasing pulse

length and decreasing power. For the shortest pulses, the spectral width is dominated

by Fourier broadening. As the power is decreased and the time is increased, the field

noise eventually dominates the spectral width. Because the field fluctuations are

typically slow compared with the length of the rf pulse, the signal is extremely noisy

in this regime and requires substantial averaging to obtain an accurate width. The

best compromise is to find a point where the Fourier broadening is comparable to the

field broadening, and a spectrum can still be measured with only a few averages.
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To eliminate the effects of interactions, we perform this measurement on a po-

larized gas of |3〉’s in a deep optical lattice (∼60 Er), which suppresses tunneling,

and measure spectra using the |2〉 − |3〉 transition. We fit the resulting spectra to a

Lorentzian line shape and find a minimum half-width at half-maximum of ∼300 Hz.

The full width corresponds to a field fluctuation of 0.3 mG.

We assess the long term stability of our field by measuring the resonance frequency

of the polarized gas at different times during the course of a day. We observe frequency

drifts of ∼1 kHz (0.5 mG) over a period of ∼1 h.

2.9 Magnetic field gradient calibration

The magnetic field gradients used during several stages of the evaporation procedure

are critical to reaching low temperatures in the experiment. Field gradients are also

an important tool which can be used to prepare spin patterns in the gas [130], measure

spin correlations [55], or probe the magnetic susceptibility of the gas. Therefore, it is

desirable to have a method of calibrating the strength of the field gradient.

We calibrate magnetic field gradients in the imaging plane by preparing a polarized

gas in a 60 Er lattice and performing a Ramsey sequence. In the Ramsey sequence,

we first apply a π/2 pulse to rotate the spins into a coherent mixture of up and down,

allow these to precesses for time τ , then perform a second π/2 pulse, and detect

the up spins. In a magnetic field gradient, spins at different positions will evolve at

different speeds, leading to a sinusoidal distribution of probability to be in one spin

state. An imperfect π/2 pulse reduces the amount of contrast but does not affect the

shape of this pattern.

Given an rf rotation about the x-axis through an angle θ and a magnetic field

B(z) = z∂zB the probability of measuring a down spin at position z is

P(↓, z) = 2 sin2(θ/2) cos2(θ/2) [1 + cos (∂zB(m↑ −m↓)zτ/~)] (2.42)

51



-10

-5

 0

 5

 10

-10 -5  0  5  10

A

B

C

y 
di

st
an

ce
 (

si
te

s)

x distance (sites)
-10 -5  0  5  10

A

B

C

x distance (sites)
-4 -2  0  2  4

A

B

C

x distance (sites)
-4 -2  0  2  4

A

B

C

x distance (sites)

-0.04

-0.02

 0

 0.02

 0.04

-3
-2
-1
0
1
2
3

-3 -2 -1  0  1  2  3

A

B

C

q y
 (

1/
si

te
s)

qx (1/sites)
-3 -2 -1  0  1  2  3

A

B

C qx (1/sites)
-3 -2 -1  0  1  2  3

A

B

C qx (1/sites)
-3 -2 -1  0  1  2  3

A

B

C qx (1/sites)

-1

-0.5

 0

 0.5

 1

-0.04

-0.02

0

0.02

0.04

-10  0  10

A

B

C

co
rr

el
at

or

distance (sites)
-10  0  10

A

B

C

distance (sites)
-5  0  5

A

B

C

distance (sites)
-2 -1  0  1  2

A

B

C

distance (sites)

Figure 2.13: Magnetic field gradient calibration. A, Correlation versus
distance for the spin spiral pattern using a series of Ramsey hold times τ =
250 µs, 1 ms, 2 ms, 8 ms (left to right). B, 2D Fourier transforms associated with the
panels in A. C, 1D averages of the correlation matrices taken along an angle of
−57° and sinusoidal fits to these patterns which give periods of 14.34(2) a, 3.757(2) a,
1.870(4) a and 0.4766(2) a.

where mσ are the magnetic moments of the two spin states. The magnetic field

gradient in terms of the wavelength λ of the spin spiral is

∂zB =
1(

m↑−m↓
h

)
λτ
. (2.43)

In the experiment, we look at spatial correlations between spins instead of the spin

density because these correlations are insensitive to overall field drifts which can shift

the location of the spin pattern. By measuring these for a variety of Ramsey hold

times, we determine the strength of the gradient with high precision. We show the

full correlation matrices for a variety of hold times in fig. 2.13A, and the associated

structure factors in fig. 2.13B. For the two rightmost panels, the period of the density
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pattern is less than the lattice spacing, which leads to aliasing effects. The true

periodicity of the pattern corresponds to the visible peaks in the structure factor

shifted by ±2π in the y-direction. To determine the periodicity, we average the

correlation matrix along the direction orthogonal to the pattern and fit the result to

a cosine, as shown in fig. 2.13C. We find that at a bias field of 50 G the MOT coils

produce a maximum gradient in the imaging plane of 1.75× 10−4 G/a = 2.33 G/cm.
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Chapter 3

Theoretical background

In this chapter we introduce the Fermi-Hubbard model, which describes the cold atom

gas prepared using the apparatus outlined in chapter 2, and discuss various theoretical

tools required to understand the Fermi-Hubbard gas. Many tutorial reviews (e.g.

[131, 132, 133, 134, 135]) and more complete references [136, 137, 138, 139, 140] on

Fermi-Hubbard physics are available, but most are written from a condensed matter

point of view. Cold atom systems have very different capabilities than condensed

matter experiments, meaning that quantities or regimes of little interest in condensed

matter are relevant to cold atom experimentalists. It is our aim to collect many of

these results in a coherent framework useful for those working in cold atoms, and

more specifically with fermion QGM’s.

We structure this chapter as follows. First, we introduce the Fermi-Hubbard

Hamiltonian and discuss a number of its properties, including its symmetries and close

connection to the Heisenberg and t−J models. Next, we discuss several tractable lim-

iting cases of the Hubbard model, including the non-interacting Fermi gas, the infinite

temperature limit, and the atomic limit. These cases provide valuable perspective as

they reveal which aspects of Hubbard physics are due to strong interactions, and

which are a result of Fermi statistics or other features. Finally, we review the linear
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response formalism which is used extensively to compare experimental results with

theory calculations in chapters 4, 5, and 6.

3.1 The Fermi-Hubbard Model

The Fermi-Hubbard Hamiltonian is a model for strongly correlated physics which is

widely studied because of the rich structure present in its phase diagram, a result

of competition between the interaction, temperature, doping, and dimensionality.

Although we often consider the Hubbard system because it may describe the essential

physics of high-Tc superconductivity, it is an interesting and important subject in its

own right.

There has been immense theoretical effort to elucidate the physics of the Fermi-

Hubbard model using a wide variety of analytic and numerical techniques. A handful

of cases can be exactly solved or efficiently simulated. These are primarily the 1D

Hubbard chain, which can be solved using a Bethe ansatz solution [141], a single

hole in a half-filled background for U = ∞ in arbitrary dimension [142], and the

infinite-dimensional model [143, 144] which can be simulated efficiently using dynam-

ical mean-field theory [145, 146, 147]. On the other hand, the two-dimensional model

is neither amenable to the same methods as the one-dimensional model nor well cap-

tured by mean-field theory. Therefore, numerical techniques on small clusters are the

primary tools used to study the 2D case in the strong interaction regime [21]. For

attractive interactions, the ground state of the model can be explored using determi-

nantal quantum Monte Carlo (DQMC). For repulsive interactions, the Fermion sign

problem prevents DQMC from accessing this regime, and the nature of the ground

state remains an open question.

The two-dimensional Fermi-Hubbard Hamiltonian describes two species of

fermions on a lattice interacting via an on-site interaction. On a square lattice, it is
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written

Ho = −t
∑
〈i,j〉σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (3.1)

where c†iσ is the creation operator for a particle of spin σ ∈ {↑, ↓} on site i = (ix, iy),

〈i, j〉 denotes a sum over nearest-neighbor sites, and niσ = c†iσciσ. The first term

represents the kinetic energy and describes the tendency of particles to tunnel between

sites, with a characteristic tunneling energy t. The second term describes the on-

site interaction between particles of opposite spins of strength U , which may be

either attractive or repulsive. Pauli exclusion forbids two particles of the same spin

occupying the same site.

The model describes competition between the tunneling term, which favors de-

localizing particles, and the interaction term, which favors localizing particles. For

weak interactions, U/t � 1 the tunneling term dominates and the system is metal-

lic for fillings nσ < 1. At nσ = 1 the system forms a band insulator. For strong

interaction, U/t � 1, a repulsive interaction strongly penalizes double occupancies.

The intermediate regime is characterized by the interaction energy and band width

being comparable, U/t ∼ 8 in the 2D model. For intermediate and strong repul-

sive interactions and low temperature, a Mott insulating state develops at half-filling,

nσ = 0.5. At even lower temperature, antiferromagnetic correlations develops, driven

by superexchange interactions [148, 149]. Superexchange is a second-order virtual

process whereby a particle tunnels to a neighboring occupied site and tunnels back.

This process is only allowed if the other site is occupied by an opposite spin particle.

We can make explicit the role of the particle number, or doping, in the problem by

writing the Hamiltonian in the grand canonical ensemble. In terms of the mean chem-

ical potential, µ̄ = 1
2

(µ↑ + µ↓), and the chemical potential imbalance, h = 1
2

(µ↑ − µ↓),

this is

HGC = Ho − µ̄
∑
i

(ni↑ + ni↓)− h
∑
i

(ni↑ − ni↓) . (3.2)
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It is well known that strong quantum fluctuations destroy true long-range order

in one- or two-dimensions [150, 151]. However, the existence of a superfluid like

state with algebraically decaying correlations is possible through the BKT mechanism

[152, 153]. The 2D attractive Fermi-Hubbard model has an s-wave superfluid ground

state [154]. Numerical evidence from looking at the d-wave pairing susceptibility

suggests the repulsive model may possess a d-wave superfluid state at low temperature

and finite doping [155].

3.1.1 Hubbard parameters in cold atoms and the cuprates

The Hubbard model describes ultracold fermions in optical lattices, and is also be-

lieved to describe the essential physics of the cuprate superconductors. The difference

between typical energy scales for ultracold atomic systems and electrons in cuprates

is nearly 11 orders of magnitude. Nevertheless, the Hubbard model can describe

both because the relevant parameters are ratios between the absolute energies and a

characteristic energy scale, typically the tunneling energy, t.

In cold atom Fermi-Hubbard systems, typical tunneling energies are t = h× 0.1−

1 kHz, corresponding to temperatures of a few tens of nK. Interaction energies are

U = h×1−10 kHz, and a wide range of U/t values can be obtained. Temperatures as

low as T = 0.25t [73] and as large as the band width, T = 8t [82] have been realized.

In the cuprates, the tunneling parameter is roughly the same for various materials

and can be obtained from band structure calculations, which find t = 300− 400 meV

[9, 156]. The tunneling energy corresponds to a temperature of roughly 4000 K. The

diagonal tunneling term is also significant, with t′ = −0.1 − −0.3t. The on-site

interaction energy is U = 2− 3 eV [157], implying that U/t = 4− 10.

Near room temperature, the ratio of the temperature to the tunneling for the

cuprates is smaller than what is currently achievable in ultracold gases, reaching T/t ∼

0.08 at 300 K. The highest temperature any cuprate material has been studied at is
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∼1100 K or T/t ∼ 0.3 [158], near the lowest temperature achievable in ultracold gases.

Achieving temperatures at and above this range is limited by structural transitions or

other effects. Superconducting transition temperatures range from about 35 K in the

Ba-La-Cu-O system [5] to 130 K in the Hg-Ba-Ca-Cu-O system [159] corresponding

to Tc/t = 0.01− 0.04.

3.1.2 Particle-hole symmetry

The Hubbard model on a bipartite lattice has particle-hole symmetry which gives a

one-to-one correspondence between states above and below half-filling. Due to this

symmetry the Hubbard phase diagram is symmetric about the half-filling point and it

is sufficient to consider either the case of particle or hole doping. On a square lattice,

we implement a particle-hole transformation which acts on real space and momentum

space as follows

ΓciσΓ† = (−1)ix+iyc†iσ (3.3)

ΓckσΓ† = c†k+Qσ, (3.4)

where Q = (π, π). This is called a particle-hole transformation because it acts on

number operators by ΓniσΓ† = (1 − niσ). For a general bipartite lattice, a similar

transformation law holds if we replace (−1)ix+iy by a factor which is 1 on the A

sublattice and −1 on the B sublattice. For lattices which are not bipartite, particle-

hole symmetry is not relevant.

Acting on the Fermi-Hubbard Hamiltonian, this transformation leaves the tunnel-

ing and interaction terms unchanged but shifts the chemical potential

ΓH(U, µ̄, h)Γ† = H(U,U − µ̄,−h) +N(U − 2µ), (3.5)
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where N is the number of sites. Exactly at half-filling, we expect that the Hamil-

tonian is invariant under the particle-hole transformation, i.e. H(n) = H(2 − n),

which implies that µ = U/2. Away from half-filling this transformation provides a

correspondence between eigenstates of H(n) and H(2− n). In particular,

H(µ̄, h) |l〉 = εl |l〉 (3.6)

H(U − µ̄,−h)Γ |l〉 = ε̃lΓ |l〉 , (3.7)

where ε̃l = εl −N(U − 2µ).

This correspondence relates the Green’s functions and spectral functions of the

two Hamiltonians,

GR(k, t, µ̄, h) = GR(k +Q,−t;U − µ̄,−h) (3.8)

A(k, ω, µ̄, h) = A(k +Q,−ω;U − µ̄,−h), (3.9)

where Q = (π, π). In the balanced gas, this implies that the spectral functions below

and above half-filling are related by A(k, ω, n) = A(k +Q,−ω, 2− n).

3.1.3 Attractive and repulsive symmetry

The Hubbard model on a bipartite lattice also has a symmetry which connects systems

with attractive and repulsive interactions. This transformation exchanges the role of

doping and spin-imbalance and provides a correspondence between the spin-balanced

repulsive model at various dopings with the half-filled attractive model at various

spin polarizations and vice versa.
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The attractive-repulsive symmetry is realized by a partial particle-hole transfor-

mation which acts only on the down-spins [160]

Λci↑Λ
† = ci↑ (3.10)

Λci↓Λ
† = (−1)ix+iyc†i↓. (3.11)

We find as in the particle-hole case this transformation leaves the tunneling term

invariant, but modifies the interaction and chemical potential terms

ΛH(U, µ̄, h)Λ† = H
(
−U, h− U

2
, µ̄− U

2

)
− (µ̄− h)N. (3.12)

This transformation changes the sign of the interaction and exchanges the roles

of µ̄ and h. The offset of −U/2 sets up a correspondence between half-filling and

spin-balance and vice versa. This proves the correspondence between spin-balanced

systems at finite doping and spin-imbalanced systems at half-filling which we alluded

to above, H(U, µ̄, 0)↔ H(−U,−U/2, µ̄− U/2).

This mapping provides a correspondence between the Green’s function and spec-

tral function for the two parameter sets. As the mapping does not affect the spin up

fermion operators, the Green’s function and spectral function become

GR
↑ (k, t;U, µ̄, h) = GR

↑

(
k, t;−U, h− U

2
, µ̄− U

2

)
(3.13)

A↑(k, ω;U, µ̄, h) = A↑

(
k, ω;−U, h− U

2
, µ̄− U

2

)
(3.14)

On the other hand, the mapping is a particle hole transformation for the down spins,

and therefore analogous to eqs. 3.8 and 3.9, the spin down Green’s function and
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spectral function become

GR
↓ (k, t;U, µ̄, h) = GR

↓

(
k +Q,−t;−U, h− U

2
, µ̄− U

2

)
(3.15)

A↓(k, ω;U, µ̄, h) = A↓

(
k +Q,−ω;−U, h− U

2
, µ̄− U

2

)
. (3.16)

3.1.4 SU(2) spin symmetry

The Hubbard model describes a system of itinerant particles of two species which we

refer to as “spins”. This analogy is natural because the Fermi-Hubbard Hamiltonian

respects spin rotations. To bring out this symmetry, we define local spin operators

Sαi =
1

2

(
c†i↑ c†i↓

)
σα

ci↑
ci↓

 , (3.17)

where σα are the Pauli matrices for α = x, y, z. The z-component of the spin

operator, Szi = 1
2
(ni↑ − ni↓), measures the difference in spin populations, whereas

the x-component measures the difference in populations of the superposition states

1√
2
(c†i↑± c

†
i↓) |0〉. The y-component is similar. The corresponding raising and lowering

operators are S+
i = c†i↑ci↓ and S−i = c†i↓ci↑.

The spin operators obey the usual SU(2) algebra commutation relations,

[Sαi , S
β
i ] = iεαβγS

γ
i , where εαβγ is the Levi-Civita symbol. The global spin op-

erators, Sα =
∑

i S
α
i , have the following commutation relations with the Hamiltonian

[
H, S+

]
= −2hS+ (3.18)

[H, Sz] = 0 (3.19)[
H, S2

]
= 0 (3.20)
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which show we can choose eigenstates ofH of definite total spin and z-spin projection.

When h = 0, the Hamiltonian is invariant under spin rotations which implies that the

spin correlations along any direction must be equal. For finite h, only rotations about

the z-axis preserve H and the total symmetry is reduced from SU(2) to U(1). In this

case, the x and y spin correlations are still constrained to be equal but the z spin

component develops a finite expectation value. We discuss experimental realization

of this canted antiferromagnetism in chapter 4.

3.1.5 SU(2) pseudospin symmetry

The Hubbard model has a second SU(2) symmetry, referred to as the pseudospin

symmetry, which is closely connected with s-wave superfluidity and charge density

wave order. This symmetry was first noticed decades after the initial development of

the Hubbard model [161].

We define the pseudospin operators for α = x, y, z by

ηαi =
1

2

(
c†i↑ (−1)ix+iyci↓

)
σα

 ci↑

(−1)ix+iyc†i↓

 , (3.21)

from which it is clear that Λ maps the pseudospin operators onto the spin operators

Ληαi Λ† = Sαi . (3.22)

We also have the raising and lower operators ηi = (−1)ix+iyci↑ci↓ and η†i =

(−1)ix+iyc†i↑c
†
i↓.

The pseudospin operators satisfy the SU(2) algebra commutation relations and

the global pseudospin operators have the following commutation relations with the
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Hamiltonian

[
H, η†

]
= −(2µ̄− U)η† (3.23)

[H, ηz] = 0 (3.24)[
H, η2

]
= 0, (3.25)

which follow from applying Λ to the corresponding relations for the Sα’s. Analogous

to the case of spin symmetry, we can choose eigenstates of definite η2 and ηz.

At half-filling, pseudospin rotations are a symmetry of the model. Away from half-

filling, the full rotational SU(2) symmetry is reduced to rotations about the z-axis.

This U(1) symmetry is the phase symmetry associated with charge conservation.

The pseudospin is closely connected with s-wave superfluidity and charge density

wave order. Performing an appropriate pseudospin rotation transforms one into the

other [162], implying that charge density wave correlations and s-wave superfluid

correlations have equal strength at half-filling. Recent experiments in our group

explored charge density correlations in the attractive Hubbard model [71].

The Hamiltonian commutation relations with η± imply the existence of three col-

lective modes in the attractive model, which are visible as poles in various response

functions [162, 163, 164]. These are a massless Goldstone mode associated with

the U(1) charge symmetry, and two partners which are massive, except at half-filling

where they are also massless [162]. The massless mode corresponds to long-wavelength

rotations of the superconducting phase. The massive modes couple density fluctua-

tions to superconducting fluctuations and may be observable in the system’s density

response [164].
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3.1.6 Higher symmetry

The SU(2) spin and pseudospin symmetries combine to form an SO(4) = SU(2) ×

SU(2)/Z2 symmetry in the Hubbard model [165, 166]. The reduction from SU(2) ×

SU(2), as we might näıvely expect based on the two individual SU(2) symmetries,

to SO(4) is associated with the additional attractive-repulsive symmetry discussed in

section 3.1.3. An interesting consequence of this is that all eigenstates of the Hubbard

model can be obtained from those at half-filling by the action of S± and η± [167]. In

some sense, the full Hubbard problem can be understood from the half-filled case.

Due to the natural relationship between the pseudospin operators and s-wave

superfluidity, the SO(4) symmetry associated with spin and pseudospin rotations is

suited to studying properties of the attractive Hubbard model, which has an s-wave

superconducting ground state. However, it would be desirable to find a symmetry

that respects d-wave superfluidity, which is expected to exist in the repulsive model.

To this end, the possibility that the Hubbard model has an approximate SO(5) sym-

metry which connects d-wave superconductivity to antiferromagnetism has also been

explored [168].

3.1.7 Connection to the t− J model

The repulsive Hubbard model is frequently considered in the strong interaction limit,

U � t. In this parameter range, double occupancies are very energetically costly.

True doublon excitations are rare, but play an important role as virtual excitations

(i.e. second order or higher processes).

A low-energy effective Hamiltonian describing the Hubbard model near the ground

state can be derived by projecting out double occupancies but retaining the effect of

leading order virtual processes, which can be formally done using a Schrieffer-Wolff
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transformation [169]. This leads to the Hamiltonian

H = −t
∑
〈i,j〉σ

(
c†iσcjσ + h.c.

)
+ J

∑
〈i,j〉

(
Si · Sj −

ninj
4

)
, (3.26)

which is referred to as the t−J model. Here t is the tunneling energy and J = 4t2/U

is the superexchange energy. Unlike the Hubbard system, this effective Hamiltonian

has an on-site basis with three states, |0〉, |↑〉 = c†i↑ |0〉 and |↓〉 = c†i↓ |0〉 making the

t− J model somewhat more tractable for numerical simulations [170].

3.1.8 Connection to the Heisenberg model

At half-filling and large U/t, itinerant fermions can be thought of as a collection of

spins on a lattice, because the only degrees of freedom are the particle species on each

site. Here, the t−J model reduces to a Heisenberg spin model [171] with Hamiltonian,

H = J
∑
〈i,j〉

Si · Sj − 2h
∑
i

Szi , (3.27)

where the spin operators Sα are defined by eq. 3.17 and we include a magnetic field

along the z-direction. This effective Hamiltonian has two on-site basis states, which

are |↑〉 = c†i↑ |0〉 and |↓〉 = c†i↓ |0〉. The Heisenberg interaction, which manifestly

depends only on the relative orientation of spins on neighboring sites, makes plain

the SU(2) spin symmetry of the model and emphasizes the role of superexchange

interactions.

Similarly, the balanced gas at strong interactions can be written in terms of the

pseudospin operators [163]

H = J
∑
〈i,j〉

~ηi · ~ηj − (2µ̄− U)
∑
i

ηzi , (3.28)
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which emphasizes the pseudospin symmetry of the model. As we expect, the chemical

potential plays the role of an effective magnetic field in this case.

3.2 The non-interacting Fermi gas

We consider the problem of non-interacting fermions on a 2D square lattice as a means

of understanding which aspects of Hubbard physics may be due to Fermi statistics or

dimensionality alone, and which are due to interaction effects. This problem is exactly

solvable, but Fermi statistics still lead to non-trivial correlations between particles.

Furthermore, the 2D situation is particularly interesting because of the presence of

a Van Hove singularity at the half-filling point, where the density of states diverges

logarithmically. Early studies emphasized the role Van Hove singularities can play in

enhancing Tc in interacting systems [172].

We suppose we have two spin components, as in the Hubbard case. The Hamil-

tonian for a mixture of non-interacting Fermions is

Hfg =
∑
kσ

εknkσ − µ̄
∑
kσ

nkσ − h
∑
k

(nk↑ − nk↓), (3.29)

where εk is the dispersion relation. This is identical to the Fermi-Hubbard Hamil-

tonian with U = 0. We will consider the tight-binding dispersion relation εk =

−2t (cos(kx) + cos(ky)). Due to particle-hole symmetry, the half-filling point occurs

at µ = 0.

Most experimental properties of the model, such as spin or density correlations and

response functions, can be determined from Green’s functions. Response functions are

particularly important because they contain information about the system’s response

to external perturbations through the Kubo formula and fluctuation-dissipation the-

orem (see section 3.7). In the non-interacting case, higher order Green’s functions

can be reduced to products of single-particle Green’s functions using Wick’s theorem

66



[173, 174, 175]. We obtain the single-particle retarded Green’s function by solving

the Heisenberg equations of motion for ck,

GR
σ (k, t) = − i

~
θ(t)e−iξkσt/~ (3.30)

GR
σ (k, ω) =

1

~(ω + iη)− ξkσ
, (3.31)

where ξkσ = εk − µσ and we always work in the limit η → 0+.

3.2.1 Equation of state

We determine thermodynamic properties of the Fermi gas through the equation of

state, n(µ, h, T ), which can be written in terms of the dispersion relation

nσ =

∫
dε F (ξkσ, T )g(ε) (3.32)

=
1

N

∑
k

F (ξkσ, T ), (3.33)

where g is the density of states, F is the Fermi function, ξkσ = εk − µσ, and N is

the number of lattice sites. The first equation is useful for analytic calculations when

the density of states has a closed form expression. The second form is convenient for

numerics. To evaluate this equation, consider a system with Nx and Ny lattice sites

in the x and y directions with periodic boundary conditions. The allowed k vectors

are kx = 2πn/Nx and ky = 2πm/Ny for n ∈ {0, ..., Nx − 1} and m ∈ {0, ..., Ny − 1}.

The size of the lattice must be chosen so that the characteristic energy spacing is

small compared with the temperature.

In cold atom experiments gases are subject to spatially varying potentials, and

therefore it is natural to ask how the system responds to an external potential which

varies in space and time. This is formally described by the density response function,

which can be determined by computing the Matsubara Green’s function G(τ) =
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−1/~ 〈T nkσ(τ)n−kσ(0)〉 using Wick’s theorem and analytically continuing to real-

frequency (see e.g.[174] or section 3.7), where k is the wave vector of the perturbation

and ω is the angular frequency. The result is

χc(q, ω) =
∑
kσ

F (ξkσ)− F (ξk+q,σ)

~ω + ξkσ − ξk+q,σ + iη
. (3.34)

The imaginary part of this response function represents dissipation from the produc-

tion of particle-hole pairs.

The density distribution of the gas in a static trap can be understood from eq. 3.33

above and the static compressibility. We determine the static compressibility either

by differentiating eq. 3.33 or taking the limit of the response function limq→0 χc(q, 0)

from eq. 3.34 to find

∂n

∂µ

∣∣∣∣
T

=

∫
dε ∂µF (ξk)g(ε) (3.35)

=
2β

N

∑
k

[1− F (ξk)]F (ξk). (3.36)

We display this equation of state (eqs. 3.33 and 3.36) for a 2D gas with a tight

binding dispersion in fig. 3.1. In the high-temperature limit, we expect χc(T ) →

n(1− n/2)/T (see section 3.5). We find this estimate is quite accurate at half-filling

for T > 5. Away from half-filling, agreement occurs at even lower temperature.

In the low temperature limit, T → 0, the compressibility saturates χc → g(µ),

as long as the density of states is finite. The 2D tight-binding density of states is

finite away from half-filling (ε = 0) where it has a logarithmic Van Hove singularity,

g(ε) ∼ − log(ε/t). At half-filling, the compressibility diverges χ(n = 1) ∼ log(T/t).

Near quarter-filling, saturation occurs at moderately low temperature T ∼ 0.5t, and

the onset of saturation is pushed to lower temperature as n approaches half-filling.
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The compressibility is closely connected with the Fermi gas density correlations,

which we discuss in more detail section 3.2.2. The two are related through the

fluctuation-dissipation theorem (see section 3.7),

χc = β
∑
d

Cn(d). (3.37)

The d = 0 term, which is the variance of the atom number, gives the strongest

contribution. At high temperatures, all off-site correlations vanish and this relation

recovers the high temperature limit compressibility.

3.2.2 Fermi gas correlations

Despite the absence of an explicit interaction term, the Fermi gas develops correlations

at low temperatures due to Fermi statistics. The ground state of the gas is a Fermi

sea, and Pauli exclusion between the momentum states induces density correlations

in real space. We can also deduce these using Wick’s theorem. The single-component

density correlations are given by

Cσ(d) = δ0d 〈nσ〉 −
∣∣∣〈c†iσci+dσ〉∣∣∣2

= δ0d 〈nσ〉 −

∣∣∣∣∣ 1

N

∑
k

F (ξk, T )eikd

∣∣∣∣∣
2

, (3.38)

which are negative for d 6= (0, 0). The nearest-neighbor correlations, Cσ(1, 0) provide

a good thermometer in the temperature range T/t = 0.1 − 1 near half-filling, as

shown in fig. 3.2A. For a 2D gas with tight binding dispersion at half-filling and zero

temperature, Cσ(1, 0) ≈ −0.041. Away from half-filling these correlations remain

significant, and we display the variation in correlation strength with density at a

variety of temperatures in fig. 3.2B. Correlations between sites with larger separation

are extremely small.
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Figure 3.1: Fermi gas equation of state. A, Density nσ versus chemical potential
µ for temperatures T/t = 0 (red), 0.4 (orange), 0.8 (green), 1.2 (blue), and 1.6
(purple). At zero temperature the density saturates when the chemical potential
reaches the edge of the energy band and the compressibility diverges at half-filling.
At higher temperature the density depends less strongly on the chemical potential,
and sharp features of the zero temperature equation of state are smoothed. B, Fermi
gas compressibility at n = 1 (red solid line), 0.8 (orange line), 0.6 (blue), 0.2 (green)
and the infinite-temperature limits (dotted lines). The compressibility saturates at
low temperature away from half-filling, and scales as 1/T at high temperature. We
calculate these quantities for increasing lattice sizes to verify that the numerics are
converged.
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Figure 3.2: Fermi gas correlators versus temperature and filling. A, Correla-
tors versus temperature for a 2D Fermi gas with tight-binding dispersion at half-filling
including C↑(1, 0) = C↓(1, 0) (red), Cs(1, 0) (green), and Cd(1, 0) (blue). These cor-
relators are useful thermometers for T/t = 0.1 − 1. B, Correlators versus density
at temperatures T/t = 0 (red), 0.4 (orange), 0.8 (green), 1.2 (blue), and 1.6 (pur-
ple) including Cσ(1, 0) (top panel), Cs(1, 0) (middle panel), and Cd(1, 0) (bottom
panel). The single-species density correlator and singles correlators are symmet-
ric about half-filling due to particle-hole symmetry. The doublon correlator reaches
maximum strength above half-filling.
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The fermion density correlations induce a variety of other correlations, including

doublon-doublon, doublon-hole, and single-single correlations which are given by

Cd(d) = C↑(d) 〈ni↓〉 〈ni+d↓〉+ 〈ni↑〉 〈ni+d↑〉C↓(d) + C↑(d)C↓(d) (3.39)

Cdh(d) = −C↑(d) 〈ni↓〉 − C↓(d) 〈ni↑〉 (3.40)

Cs(d) = C↑(d) (1 + 4 〈ni↓〉 〈ni+d↓〉 − 2 〈ni↓〉 − 2 〈ni+d↓〉)

+ C↓(d) (1 + 4 〈ni↑〉 〈ni+d↑〉 − 2 〈ni↑〉 − 2 〈ni+d↑〉)

+ 4C↑(d)C↓(d). (3.41)

It is instructive to compare the structure of Fermi gas correlators to those of the Hub-

bard system to assess the significance of interaction effects compared with fermionic

statistics.

The doublon correlations are always negative and their strength can be enhanced

or reduced compared with the single-component density correlators based on the

filling, which affects the probability a doublon exists in the first place. We show the

doublon correlation at half-filling versus temperature in fig. 3.2A, and versus density

in fig. 3.2B. Similar negative nearest-neighbor correlations have been observed in the

attractive Hubbard system [71] where they are further enhanced by superexchange.

The doublon-hole correlations are always positive, similar to the situation in the

repulsive Hubbard model [68]. For the non-interacting case the positivity is a result

of fermion antibunching, whereas in the interacting system superexchange processes

enhance these correlations because they are energetically favorable.

The singles correlator is negative away from half-filling and positive near half-

filling. The negative correlation comes from the single-component density correlations

in the low density regime where doublons are rare and ns ∼ n↑ + n↓, or in the high-

density regime where most sites contain doublons. The first two terms in eq. 3.41

describe this contribution. The third term describes a positive contribution to the

72



correlator which competes with the negative contribution. We can understand the

situation by considering two sites with an up spin on the left site and a down spin

on the right. Fermion antibunching then leads to a lower probability that either

site has a second atom. Therefore it is more likely that we have singly occupied

sites of opposite spin next to each other than in an uncorrelated system, where at

least one of these sites would be more likely to contain a doublon. We display the

single correlations versus temperature in fig. 3.2A and versus density in fig. 3.2B. This

behavior is qualitatively similar to that observed in the repulsive Hubbard model [68],

but in that case the strength of the positive correlations near half-filling is enhanced

by superexchange.

3.2.3 Magnetism

A two-component Fermi gas exhibits paramagnetism in response to an applied mag-

netic field. This is referred to as Pauli paramagnetism, and can be understood as the

magnetic field inducing a differential shift in the chemical potentials of the two com-

ponents. The magnetic susceptibility immediately follows from the density response,

χm(q, ω) = χc(q, ω) (3.42)

∂(n↑ − n↓)
∂h

∣∣∣∣
T

= lim
q→0

χm(q, ω = 0). (3.43)

In the T → 0 limit, the magnetic susceptibility is again given by the density of states.

Fermi statistics induce negative nearest-neighbor spin correlations,

Cz
spin(d) = C↑(d) + C↓(d) (3.44)

Cx
spin(d) = Cy

spin(d)

= δ0d 〈n〉 −
〈
c†i↑ci+d,↑

〉〈
c†i+d,↓ci↓

〉
−
〈
c†i↓ci+d,↓

〉〈
c†i+d,↑ci↑

〉
. (3.45)
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For U/t = 8 at half-filling and T → 0, Cz
spin(1, 0) = −0.36 for the Hubbard system

[69], whereas Cz
spin(1, 0) = −0.082 for the Fermi gas. A large portion of the Hub-

bard correlations are due to correlations between different spin states, C↑↓(1, 0) and

C↓↑(1, 0) (due to the decomposition of eq. 2.13), which are induced by the Hubbard

interaction.

For a spin-balanced gas, SU(2) spin symmetry ensures that Cz
spin = Cx,y

spin in both

Fermi and Hubbard gases. For the Fermi gas, the three spin correlators are equal

at half-filling even in the presence of imbalance, due to particle-hole symmetry. In

contrast, the spin imbalanced repulsive Hubbard gas at half-filling develops stronger

antiferromagnetic correlations along the x- and y-directions, compared with the z-

direction. We discuss this canted antiferromagnetism in more detail in chapter 4.

The magnetic susceptibility and spin correlations are related through the

fluctuation-dissipation theorem (see section 3.7),

χm = β
∑
d

Cz
spin(d). (3.46)

3.3 The local density approximation

In previous sections we have discussed homogeneous systems, but cold atom ex-

periments are frequently performed in harmonic trapping potentials. Simulating a

trapped system is solving a less general problem than the homogeneous system, and

can require more effort because the trap breaks translational symmetry. Therefore,

it is desirable to apply the solution of the homogeneous problem to understand the

trapped system. As long as the trapping potential varies slowly compared with rel-

evant length scales in the problem, such as the lattice spacing, correlations lengths,

mean free paths, etc., the gas appears locally homogeneous. Given such a separation

of length scales, the potential can be treated as a spatially varying chemical potential

74



and an observable at position r in the trap can be calculated from the solution to

the homogeneous problem at µ(r) = µo − V (r), where µo is the chemical potential

at the center of the trap. This semiclassical approximation called the local density

approximation (LDA). The density profile in the LDA is

〈n(r, T )〉 = 〈n(µ(r), T )〉 , (3.47)

which can be determined from eq. 3.33 for the non-interacting system, or from quan-

tum Monte Carlo or other techniques for the Hubbard system.
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Figure 3.3: Density profiles along one dimension for a non-interacting Fermi gas
(red) and Hubbard systems at U/t = 2 (orange), 4 (green), 6 (blue), and 8 (purple)
at fixed atom number N = 2770 and T/t = 0.3 in the local density approximation
for a harmonic trap with trapping frequency ω = (2π)150 Hz. Stronger interactions
favor lower central density in the trap, leading to broader profiles.

We consider LDA density profiles for a non-interacting gas, determined from

eq. 3.33, and a Hubbard gas at several different repulsive interactions, determined

from DQMC (fig. 3.3). For all profiles, we work with a fixed number, and T/t = 0.3.
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The trapping potential is harmonic, µ(r) = µo − 1
2
mω2r2, where ω = (2π)150 Hz is

the trapping frequency. As the strength of the repulsive interaction increases, the

peak density in the trap decreases.

3.4 The atomic limit

We considered the situation when the Hubbard interaction U vanishes in the previous

section. Here we consider the opposite limit, where the tunneling energy vanishes.

We note that this case should be distinguished from the large U -limit, U � t, T ,

because in that case tunneling processes are still present [140]. In this case, we have

a system of decoupled sites which we refer to as the atomic limit. The Hamiltonian

is H = Uc†↑c↑c
†
↓c↓. This problem can be easily solved because there are only four

allowed quantum states on a single site, |0〉, c†↑ |0〉, c
†
↓ |0〉 and c†↑c

†
↓ |0〉, nevertheless it

frequently provides useful intuition.

All thermodynamic information comes from the grand partition function

Z = 1 + 2eβµ + e−β(U−2µ), (3.48)

and the grand potential Ω(T, µ) = −kbT log(Z). In particular, the atomic density

and entropy are,

natomic = − ∂Ω

∂µ

∣∣∣∣
T

=
1

Z

(
2eβµ + 2e−β(U−2µ)

)
(3.49)

Satomic = − ∂Ω

∂T

∣∣∣∣
µ

= kb log(Z)− kb
Z
β
(
2µeβµ + (2µ− U)e−β(U−2µ)

)
. (3.50)

The local density and entropy in the trap can be determined using the LDA.
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Dynamical information is contained in the Green’s function and single-particle

spectral function which are

GR
↑ (k = 0, ω) =

1

Z

(
1 + eβµ

(ω + iη)− µ
+

eβµ + e−β(U−2µ)

(ω + iη) + µ− U

)
(3.51)

A↑(k = 0, ω) =
1

Z

[(
1 + eβµ

)
δ(ω − µ) (3.52)

+
(
eβµ + e−β(U−2µ)

)
δ(ω + µ− U)

]
,

where we write k = 0 to emphasize that because the sites are decoupled there is

no momentum resolution in the problem. The spectral function exhibits a two peak

structure split by the interaction energy U . These features correspond to an extreme

limit of the upper and lower Hubbard bands.

3.5 The infinite temperature limit

Both the Hubbard model and the non-interacting Fermi gas are single band models

which have bounded energy spectra, and therefore we can sensibly speak of a high-

temperature limit where the temperature is much larger than other energy scales in

the problem, T � t, U,W , where W = 8t is the band width. The high temperature

behavior of a wide variety of thermodynamic quantities and response functions can

be derived as a series expansion in powers of T−1 [176].

For many quantities, the leading order term in the high-temperature limit comes

from the atomic limit [176]. From this perspective, it is easy to show that we have the

following expressions for the chemical potential and compressibility at given density

n in either a finite-U Hubbard system or a two-component non-interacting Fermi gas,

µ(T ) = log

[
n

2− n

]
/T +O(T−2) (3.53)

χc(T ) =
n(1− n/2)

T
+O(T−2), (3.54)
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where log is the natural logarithm. To this order, the coefficients are independent of

U , but this will not be true in general. As noted in section 3.2.1, n(1 − n/2) is the

variance in the on-site density, and therefore the compressibility equation above can

also be thought of as a manifestation of the fluctuation-dissipation theorem.

A wide variety of other quantities, including spectral functions and correlation

functions can also be obtained in the high temperature limit. For these quantities,

which are frequency dependent, the terms of the expansion are functions of frequency

and can be written [176],

χ′′(k, ω)

ω
=

1

t2

∞∑
i=1

(
t

T

)i
f (i) (k, ω/t, U) , (3.55)

where χ′′ is the imaginary part of a susceptibility function (see section 3.7). Re-

constructing the full frequency dependence of the f (i) is a challenging problem, but

many moments of these terms can be calculated [176]. Some useful general features

of various correlations can be ascertained from this expression, including the fact

that the conductivity, σ(ω = 0) scales like 1/T at high temperature. We discuss the

connection between this scaling and strange metallicity in chapter 5.

3.6 Parameter fitting

In previous sections we have discussed obtaining the expectation values of various

observables in the grand canonical ensemble, where the observables, O(µ, T, P ), are

naturally functions of temperature, chemical potential and other parameters P of

the system. However, these parameters are generally not known experimentally. To

determine them it is necessary to compare measured quantities with theory results.

In the experiment it is more natural to work with the density, which is directly

measurable, rather than the chemical potential. Working in the LDA, the chemical

potential effectively varies across the trap, and determining its variation requires a
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detailed knowledge of the trapping potential. This could be extracted from an addi-

tional experiment, but if the equation of state, n(µ, T ), can be calculated theoretically

we can invert the relationship between n and µ to determine µ(n, T ) and O(n, T, P ).

The density can be measured using QGM techniques, which leaves T and P as free

parameters in the problem.

We determine T and P as follows. Suppose we measure a family of observables

{Oj} and the density at a number of spatial positions indexed by i. Then we use a

nonlinear least squares procedure to minimize

χ2 =
∑
ij

1

σ2
ij

∣∣∣Oj(ni, T, P )−Otheory
j (ni, T, P )

∣∣∣2 , (3.56)

where σij is the standard error of the mean in the measurement of Oj(ni, T, P ).

When the equation of state can be determined analytically, the functions

Otheory
j (n, T, P ) can be directly implemented on a computer. For numerical methods,

such functions can be constructed using interpolation techniques. We typically

generate theory values on a grid of chemical potential and temperature points

(µr, Ts), which are not necessarily equally spaced, and calculate the observables

Orsj = Oj(µr, Ts). We rewrite the observables as a function of density and temper-

ature, Orsj = Oj(nrs, Ts). However, interpolation is not efficient because the points

(nrs, Ts) are not on a grid. Therefore, we perform a first (slow) interpolation to

obtain Otsj = (nt, Ts) on a grid. Subsequent (fast) interpolations can be performed

efficiently using these points.

Parameters of the problem include the effective field h and the interaction en-

ergy U . In addition, we can include experimental efficiencies, such as the imaging

fidelity (see section 2.4.7). Typically we determine the imaging fidelities using other

techniques, but it is also possible to include them as fitting parameters.
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To increase the signal-to-noise of experimental observables, we typically compute

their average over some spatial region. In many cases, we choose elliptical contours

and perform an azimuthal average before applying the above fitting procedure. If the

cloud does not have elliptical symmetry, we can apply alternative averaging schemes.

This fitting scheme can be modified to account for real space variations in the

trap, such as a spatially varying U/t. In this case, we consider also the real space

coordinates (xi, yi) associated with density ni. If the functional form of the varying

parameter is known, we can write Pi = f(Po, xi, yi), and substitute this dependence

in eq. 3.56.

3.6.1 Fermi gas

Using this fitting technique combined with the Fermi gas equation of state discussed

in section 3.2.1 and the correlators discussed in section 3.2.2, we can determine the

parameters of the weakly interacting gas from experimental data. The parameters

of the problem are (µ̄/t, T/t, h/t), and accessible experimental observables are 〈nσ〉,

Cσ(1, 0), 〈ns〉, Cs(1, 0), 〈d〉, and Cd(1, 0). We show the result of the fitting technique

described above for a weakly interacting |1〉− |3〉 mixture in fig. 3.4. We prepare this

system by adjusting the magnetic bias field near 568 G, where the |1〉− |3〉 scattering

length vanishes. This fit yields a temperature of T/t = 0.40(5), where we have fixed

h = 0 and used an imaging fidelity of 0.96 and doublon transfer efficiency of 0.9.

After determining the temperature and other parameters of the system, the chem-

ical potential across the trap is known through the equation of state. We display the

chemical potential in fig. 3.5, and a harmonic fit to determine the trapping frequency.

The potential appears to be harmonic out to a radius of 35 sites and the trapping

frequency is ω = (2π)0.011(1)
√

2h
ma2

√
t
h
. This unconventional unit of frequency is ob-

tained from fitting the chemical potential curve after writing the chemical potential
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Figure 3.4: Fermi gas parameter fitting. Experimental data (points) and Fermi
gas fit (line) for various observables versus total density. Experimental points are
adjusted to account for imaging efficiencies. A, Singles density (top) and nearest-
neighbor singles density correlations (bottom). The singles correlations are negative
far from half-filling, reflecting the negative single-component density correlations. B,
Doubles density (top) and nearest-neighbor doubles density correlations (bottom).
The doublon correlations are negative, reflecting the influence of the single-component
density correlators. C, Spin-up density correlator (top) and spin-down density corre-
lator (bottom). These correlators are the most important observables for determining
the temperature from the fit. Error bars standard error of the mean.

in units of t and distance in units of lattice sites. Here t/h ≈ 1250 Hz leading to a

trapping frequency ω = (2π)180 Hz, a typical value in the experiment.

3.6.2 Determinantal quantum Monte Carlo

For the Hubbard gas the parameters are (µ̄/t, T/t, U/t, h/t), and we consider the same

observables as for the Fermi gas versus total density, 〈n〉. These various observables

are each useful under certain conditions, but it is not necessary to include all of

them simultaneously in most cases. For example, the correlators Cσ(1, 0) are useful
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Figure 3.5: Fermi gas trap parameter determination. Chemical potential
determined from the Fermi gas equation of state (points), and a parabolic fit to these
points (line). The potential is harmonic to a radius of about 30 sites, where the
Gaussian shape of the trapping beam becomes significant. Error bars standard error
of the mean.

thermometers for temperature T/t ∼ 0.1 − 1. The singles and doubles densities

are sensitive to the interaction strength at low temperatures and serve as useful

thermometers at temperature T/t ∼ 1 − 10. The doublon-density correlator is a

useful thermometer for attractive interaction. The single-species densities are useful

for determining h/t in a spin imbalanced system. In principle it is possible to include

other observables, such as further neighbor correlators.

We display the results of a fit used to determine the temperature T/t for a re-

pulsive gas at fixed interaction strength U/t = 8 and field h/t = 0 in fig. 3.6. This

fit only considers 〈ns〉 and Cσ(1, 0). The correlator acts as a thermometer at low

temperatures, whereas the singles density is more sensitive at higher temperatures.

Combining the two gives temperature sensitivity over a wider range. This fit yields
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Figure 3.6: DQMC parameter fitting, repulsive interaction. Experimental
data corrected for imaging efficiencies (points) and DQMC fit (lines) for various quan-
tities versus total density. This fit yields T/t = 0.39(2) for DQMC data at U/t = 8.
A, Experimental results (points) and DQMC fit (lines) for the singles density versus
total density. B, Spin-up density correlator, C↑(0, 1), for nearest-neighbor sites. Error
bars standard error of the mean.

a temperature T/t = 0.39(2) accounting for an imaging fidelity of 0.96. Similar fits

are used for thermometry in chapter 5.

The result of an exemplary fit used to determine T/t and U/t is shown in fig. 3.7.

At low temperatures, the correlators provide thermometry while the singles and dou-

bles densities help determine the interaction. We assume a doublon transfer efficiency

of 0.9 and an imaging fidelity of 0.96. The net doublon imaging fidelity is the prod-

uct of these factors. The densities are corrected by a single factor of the relevant

efficiency, and correlators are corrected by the efficiency squared. The fit in fig. 3.7

yields a temperature of T/t = 0.38 and interaction of U/t = −4.2. Similar fits are

used to determine T/t and U/t in chapter 6.

We obtain the DQMC results used for parameter fitting in this thesis from the

Quantum Electron Simulation Toolbox (QUEST) software [177]. The simulations

are run on an 8 × 8 homogeneous square lattice with the inverse temperature split

into L = 40 − 80 imaginary time slices, where L∆τ = β. We perform 5000 warm
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Figure 3.7: DQMC parameter fitting, attractive interaction. The experimen-
tal data corrected for imaging efficiencies (points) and DQMC fit (lines) for various
quantities versus total density. This fit yields T/t = 0.38 and U/t = −4.2. A, Singles
density (top) and nearest-neighbor singles density correlator (bottom). The singles
density constrains the interaction. The singles density correlations are small, of the
same order as the error bars. B, Doubles density (top) and nearest-neighbor doubles
density correlator (bottom). The doubles density constrains the interaction, provid-
ing similar information to the singles density. The doubles density correlations are a
thermometer. C, Spin-up density correlator (top) and spin-down density correlator
(bottom). The single-component density correlators are good thermometers in this
temperature range. Error bars standard error of the mean.

up sweeps, 50000 measurement sweeps and between 100 and 1000 passes to accu-

mulate adequate statistics. Using these parameters, a single simulation at fixed

(µ̄/t, T/t, U/t, h/t) takes several hours to run. We perform up to 100 simulations

in parallel using Princeton’s Feynman cluster.

3.7 Linear response theory

Many of the experiments considered in this thesis involve perturbing a strongly-

interacting system with a probe and observing the response of the system. In the
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limit of a weak probe, these experiments can be understood using perturbation theory.

In this section, we provide a brief outline of linear response theory. Although this

material is available in a variety of textbooks (see for example [174, 175, 178]) it is

rarely collected in a manner that is useful for the experimentalist.

We suppose we have a strongly interacting Hamiltonian and a weak probing field

h(r, t) which is coupled to an observable M(r, t) of the system and we observe the

system response by measuring observable O(r, t). We think of h as a generalized force

which is conjugate to the observable M . Then the full Hamiltonian isH = Ho+H′(t),

where Ho is the unperturbed Hamiltonian and

H′ =

∫
dr M(r, t)h(r, t) (3.57)

=

∫
dq M(−q, t)h(q, t). (3.58)

In the second line we have taken the Fourier transform of both the observable and

the field, which makes clear that a field with wave vector q couples to the observable

at wave vector −q.

We apply first-order time dependent perturbation theory to determine the re-

sponse of O to this perturbation,

〈O(r, t)〉H − 〈O(r, t)〉Ho = − i
~

∫ t

−∞
dt′
∫
dr′ 〈[O(r, t),M(r′, t′)]〉Ho h(r′, t′), (3.59)

which depends only on expectation values taken with respect to the unperturbed

system. We can write the change in expectation value of O due to the perturbation

〈δO(r, t)〉 =

∫ ∞
−∞

dt′
∫
dr′ ΦOM(r, t, r′, t′)h(r′, t′) (3.60)

ΦOM(r, t, r′, t′) = − i
~
θ(t− t′) 〈[O(r, t),M(r′, t′)]〉 , (3.61)

85



where ΦOM is the response function. From eq. 3.61, we see it is identical with the

retarded Green’s function GR
OM(r, t, r′, t′). This expression, referred to as the Kubo

formula, gives a method for calculating response functions in terms of correlation

functions [179].

Often the frequency domain version of the response function is more useful

χOM(r, r′, ω) =

∫
dt ei(ω+iη)(t−t′)ΦOM(r, t, r′, t′), (3.62)

which we will refer to as the susceptibility. Here we add a small positive imaginary

part, iη, to the frequency so that the integral converges, but always work in the limit

η → 0. The susceptibility can be calculated from the eigenstates, |n〉 of Ho with

energies εn according to

χOM(ω) =
1

Z

∑
m,n

(
e−βεn − e−βεn

) 〈n| O |m〉 〈m|M |n〉
~(ω + iη) + εn − εm

. (3.63)

This relation makes clear that when O = M and O is Hermitian, then the real

(imaginary) part of the susceptibility is symmetric (antisymmetric) in ω.

In many cases of interest, our systems are translationally invariant. In that case,

Φ and χ only depend on r and r′ through the combination r−r′. Similarly, whenHo is

time-independent these only depend on t and t′ through t− t′. In the translationally

invariant case, it is useful to consider the response function and susceptibility in

Fourier space,

ΦOM(q, t) = − i
~
θ(t− t′) 〈[O(q, t),M(−q, t′)]〉 , (3.64)

where we have the particularly simple relation

〈δO(q, ω)〉 = χOM(q, ω)h(q, ω). (3.65)
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The susceptibility is convenient to work with because it is analytic in the upper-

half plane. For example, this implies that the full susceptibility can be obtained from

the real or imaginary part alone through the Kramers-Kronig relation

χ(ω) =
1

iπ
P
∫ ∞
−∞

χ(ω′)

ω′ − ω
dω′, (3.66)

where P denotes the Cauchy principal value of the integral. Taking the real or

imaginary part of the above equation leads to expressions for the real part of χ in

terms of the imaginary part or vice-versa.

Many response functions are directly accessible through hydrodynamics in the

long-wavelength and low frequency limit (k → 0, ω → 0) [180], a fact we will take ad-

vantage of to measure the diffusion constant and conductivity of a repulsive Hubbard

system in chapter 5.

The Kubo formula is closely connected with the fluctuation-dissipation theorem,

which relates the correlation function,

SOM(t) = 〈O(t)M(0)〉 − 〈O(t)〉 〈M(0)〉 (3.67)

to the dissipative part of the susceptibility function [181]. Comparing the spectral

representation of the susceptibility (eq. 3.63) to that of the correlation function S

demonstrates that,

SOM(ω) = 2~ [1 +B(ω)]χ′′OM(ω). (3.68)

Here B is the Bose distribution function, and χ′′ is the imaginary part of the response

function. In the limit βω → 0, this expression recovers the classical result, S(ω) =

2
βω
χ′′(ω). Applying the Kramers-Kronig relation in this limit gives an expression for
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the ω = 0 susceptibility in terms of the t = 0 correlation function,

χ′OM(ω = 0) = βSOM(t = 0), (3.69)

where χ′ is the real part of the susceptibility. This form of the fluctuation-dissipation

theorem leads to the expressions for the charge compressibility (eq. 3.37) and magnetic

susceptibility (eq. 3.46) given earlier. For example, we obtain eq. 3.37 by identifying

O(ri, t) = ni(t) and M(t) =
∑

i ni(t). These are exact relations because they are

taken at ω = 0.

3.7.1 Matsubara Green’s function

Linear response calculations are frequently easier to perform working in imaginary

time, as opposed to directly in real time. We briefly introduce the Matsubara Green’s

function and discuss its close connection to the retarded Green’s function.

The Matsubara Green’s function at imaginary time τ = it is defined by

GAB(τ) = −1

~
〈T A(τ)B(0)〉 , (3.70)

where A(τ) = eτHA(0)e−τH. Here T is the time ordering operator given by

T A(τ)B(0) = θ(τ)A(τ)B(0)∓ θ(−τ)B(0)A(τ) (3.71)

for fermionic and bosonic operators respectively. The Matsubara Green’s function is

periodic for bosons and antiperiodic for fermions, i.e. G(τ + β) = G(τ) for bosons

and G(τ+β) = −G(τ) for fermions. This property implies it has a discrete frequency
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spectrum, and we write its Fourier transform

G(iΩn) =

∫ β

0

dτ G(τ)eiΩnτ (3.72)

G(τ) =
1

β

∑
n

G(iΩn)e−iΩnτ , (3.73)

where Ωn are the Matsubara frequencies given by Ωn = 2πn
β

for bosons and Ωn =

π(2n+1)
β

for fermions.

The utility of working with the Matsubara Green’s function comes from the many

nice properties of the time ordering operator. For example, Wick’s theorem applies

to time ordered Green’s functions which enables the apparatus of many-body pertur-

bation theory. The Matsubara Green’s function is useful for linear response because

it can be analytically continued to yield the retarded Green’s function. This follows

from the spectral representation,

GAB(iΩn) =
1

Z

∑
n,m

(e−βεn ± e−βεm)
AnmBmn

~(iΩn) + εn − εm
, (3.74)

which is identical with the retarded Green’s function (eq. 3.63) under the substitution

iΩn → ω + iη. Here the upper sign is for fermionic operators, and the lower for

bosonic. Indeed, we can define an analytic function G(z) everywhere on the complex

plane away from the real axis which coincides with the Matsubara Green’s function at

the Matsubara frequencies, matches the retarded Green’s function when approaching

the real axis from above (limη→0G(ω + iη) = GR(ω)), and matches the advanced

Green’s function when approaching from below (limη→0G(ω − iη) = GA(ω)). This is

an example of the principle of analytic continuation. An expression for an analytic

function on an open set can be extended to a larger open set, provided it is well

defined.
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The Matsubara Green’s function is also closely connected to the spectral function,

A(ω) = − 1

π
Im
[
GR(ω)

]
. (3.75)

Using contour integration techniques (see e.g. [174, 175]) this connection can be

expressed

G(τ) =

∫ ∞
−∞

dω F/B(−ω)e−ωτA(ω) (τ ≥ 0) (3.76)

G(τ) =

∫ ∞
−∞

dω F/B(ω)e−ωτA(ω) (τ ≤ 0) (3.77)

G(iΩn) = ∓
∫ ∞
−∞

dω
A(ω)

iΩn − ω
, (3.78)

where as above the upper and lower symbols are for fermionic and bosonic operators.

Here B and F are the Bose and Fermi distribution functions respectively. Eqs. 3.76

and 3.77 are the basis for numerical analytic continuation techniques, which given

G(τ) or G(iωn) attempt to invert one of the integral equations to obtain A(ω) [182].

Eq. 3.78 has a broader domain of validity than given above. If we take iΩn → z,

where z is a general complex argument, this provides an expression for G(z) off the

real axis.
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Chapter 4

Canted antiferromagnetism in a

Fermi-Hubbard system

Portions of this chapter are based on work previously published as

P. T. Brown, D. Mitra, E. Guardado-Sanchez, P. Schauß, S. S. Kondov,

E. Khatami, T. Paiva, N. Trivedi, D. A. Huse, and W. S. Bakr. Spin-

imbalance in a 2D Fermi-Hubbard system. Science 357, 6358, 1385–1388

(2017).

The Fermi-Hubbard model exhibits quantum magnetism near half-filling in the

sense that up and down spins are strongly correlated. Observing an up spin next to a

down spin is more likely than observing two particles with the same spins next to each

other. These antiferromagnetic spin correlations are favored by the superexchange

interaction which we introduced in section 3.1. The superexchange physics can be

made more transparent by mapping the Fermi-Hubbard model onto a Heisenberg spin

model at half-filling and strong interaction (see sections 3.1.7 and 3.1.8).

To gain more insight into quantum magnetism, we can ask what happens when we

introduce an external magnetic field which also couples to the spins. Does the com-
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petition between the external magnetic coupling and the antiferromagnetic coupling

lead to new and interesting physics?

Magnetic fields couple to particles in two ways. The first is through the Lorentz

force which affects the motion of charged particles. This orbital magnetic coupling

is extremely important in real materials and leads to interesting physics such as the

Meissner effect, a form of perfect diamagnetic behavior observed in superconductors.

More generically, it leads to the weak Landau diamagnetism predicted in electron

systems [183]. However, this magnetic coupling is not relevant for cold atom systems,

because atoms are charge neutral. The second mechanism is Zeeman coupling, i.e.

magnetic dipole coupling between the magnetic field and the particle spin. This

effect shifts the energy of spins with different angular momentum projections along

the directions of the field. In a system with spin-exchange this leads to imbalanced

spin populations. For weakly interacting particles the Zeeman shift increases the

population of spins pointing in the same direction as the field, an effect referred to

as Pauli paramagnetism (see section 3.2.3). We can also adopt a complementary

viewpoint, and regard a spin population imbalance as an effective Zeeman magnetic

field.

In real materials, Lorentz effects typically mask Zeeman field effects. For exam-

ple, in superconducting materials Lorentz effects lead to the destruction of supercon-

ductivity above a certain critical field, which occurs before Zeeman effects became

noticeable. One method of suppressing Lorentz effects is to work with a 2D material

and apply a magnetic field parallel to the material plane.

Even when such techniques suppress Lorentz effects, observing significant Zeeman

effects requires the Zeeman shift to be comparable to the superexchange energy. We

can make a rough estimate of the fields required by comparing the superexchange

energy to gµbB, where g ≈ 2 is the Landé g-factor of the electron and µb is the Bohr

magneton. For a typical superexchange energy in a cuprate material, J ∼ 0.13 eV [9],
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this implies a field strength of B ≈ 103 T. Typical laboratory magnetic fields are in

the range of a few tens of Tesla. Therefore, even in situations where Lorentz magnetic

field effects can be suppressed, it is difficult to reach significant Zeeman fields.

Atomic systems appear to have little advantage over electron systems because

atoms inherit magnetic moments from their constituent particles. Since electrons in

closed shells have zero net magnetic moment, we might expect an enhancement of at

most a factor of the number of valence electrons for a given atomic species. However,

atomic systems are capable of achieving extremely strong effective fields by taking

advantage of the analogy between a spin population imbalance and a Zeeman field.

In these systems spin exchange can be avoided, so a prepared spin-imbalanced will

be conserved. Spin exchange only occurs through spin-changing collisions, which are

energetically forbidden at cold temperatures and finite Zeeman splitting for certain

initial states, or through magnetic dipolar interactions which are extremely weak

because these systems are dilute. From this point of view, preparing a nearly polar-

ized cold atom system corresponds to applying a magnetic field orders of magnitude

stronger than achievable in the lab.

4.1 Magnetic fields and correlated quantum sys-

tems

The interplay of strong interactions and magnetic fields gives rise to novel forms of

superconductivity and magnetism in quantum many-body systems. Here we present

an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm

for strongly-correlated fermions on a lattice—in the presence of a Zeeman field and

varying doping. Using site-resolved measurements, we reveal spin-anisotropic an-

tiferromagnetic correlations, a precursor to long-range canted order. We observe

nonmonotonic behavior of the local polarization with doping for strong interactions,
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which we attribute to the evolution from an antiferromagnetic insulator to a metallic

phase. Our results pave the way to experimentally mapping the low-temperature

phase diagram of the Fermi-Hubbard model as a function of both doping and spin

polarization, for which many open questions remain.

Magnetic fields can significantly modify the behavior of strongly-correlated con-

densed matter systems in important ways, even leading to new phases of matter.

Well-known examples include superconductors with finite-momentum pairing induced

by Zeeman effects and fractional quantum Hall states induced by orbital effects [184].

Theoretically, a cornerstone model for studying strongly-interacting fermions on a

lattice is the Fermi-Hubbard model [185]. This model has been the topic of intense

study over several decades because of its potential implications for understanding

high-temperature superconductors and other quantum many-body systems [9, 10].

The phase diagram of the Fermi-Hubbard model in the presence of a Zeeman field

is qualitatively understood at half-filling, with a canted antiferromagnetic state ex-

pected at low temperatures [186]. Much less is known, even on a qualitative level,

about the phase diagram away from half-filling, where the interplay of doping, spin

polarization, and strong correlations can lead to rich physics.

The difficulty of numerical simulations of the Fermi-Hubbard model at low tem-

peratures has motivated quantum simulations that use two-component Fermi gases in

optical lattices [39, 40]. Rapid developments have been achieved by the recent intro-

duction of quantum gas microscopes for fermionic atoms [60, 61, 62, 63, 64, 65, 187].

The reduction of density fluctuations in the Mott insulating phase—previously in-

ferred from bulk measurements [39, 40]—has been explicitly revealed. Furthermore,

site-resolved measurements probe antiferromagnetic correlations at all distances and

sites in the trapped gas directly[67, 68, 69], complementing other techniques that de-

tect these correlations by measuring the fraction of singlets on neighboring sites [43],
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Figure 4.1: Site-resolved imaging of a spin-imbalanced Fermi gas in an opti-
cal lattice. A, Schematic phase diagram of the Fermi-Hubbard model at half-filling.
T is the temperature, and h is the effective Zeeman field controlled experimentally
by the global polarization Pg, both in units of the tunneling energy, t. At h = 0, the
ground state is an antiferromagnet with SU(2) symmetry. For non-zero h, there is
a finite temperature transition to a canted antiferromagnetic phase. Antiferromag-
netic correlations persist at experimental temperatures (gray band). The ellipsoids
surrounding the spins illustrate the magnitude of correlations in a given direction.
B, We prepare a spin mixture (blue) in an optical lattice and then selectively remove
one spin state (red or green) and doublons. We extract spin correlations from the
resulting density correlations for the Sz spin projection and the S⊥ projection after a
global spin rotation (π/2-pulse). C, Site-resolved fluorescence image after removal of
one spin state. Field of view is 35 µm× 35 µm. D, Azimuthally averaged profiles and
single fluorescence images showing the total singles density ns (purple), ns↑ (green), ns↓
(red), ns (blue), and local polarization ps (gray) over the trap at U/t = 8.0(5). Insets
are corresponding exemplary single-shot pictures. Field of view is 48 µm × 48 µm.
Error bars standard error of the mean.
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using Bragg scattering [49] or taking advantage of the fluctuation-dissipation theorem

[54].

In this work, we probe the magnetic response of a two-dimensional Fermi-Hubbard

system using a spin-imbalanced Fermi gas that has so far been studied mostly by

theoretical means [188, 189, 190]. Thermodynamically, a non-zero polarization cor-

responds to the introduction of an effective Zeeman field h = (µ↑ − µ↓)/2, where µ↑,↓

are the chemical potentials of the two spin components. The system is described by

the Hubbard Hamiltonian given in eq. 3.2.

4.2 Quantum magnetism in the Fermi-Hubbard

model

At low temperatures and in the absence of a field, the half-filled Fermi-Hubbard

model exhibits isotropic antiferromagnetic correlations along any projection of the

spin owing to the SU(2) spin symmetry (see section 3.1.4). The correlations decay

exponentially with distance, and the correlation length diverges at zero temperature.

A non-zero magnetic field reduces the spin symmetry to U(1), leading to a finite

temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition to a canted an-

tiferromagnet, where the correlations decay algebraically [188] (fig. 4.1A). Canting

accommodates magnetization along the field while still benefiting from the superex-

change interactions by building up long-range antiferromagnetic correlations of the

spin components perpendicular to the magnetization. The BKT phase transition

boundary has been calculated for the Fermi-Hubbard model, but until recently dif-

ferent methods had large discrepancies [154]. Even above this boundary, precursor

canted correlations are present and we directly detect them in our experiment. Fur-

thermore, we probe the spin-imbalanced Fermi-Hubbard model in the presence of
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doping, where theory is challenged by the fermion “sign problem”, revealing a non-

monotonic behavior of the local polarization.

4.3 Experimental preparation

We realize the 2D Fermi-Hubbard model using a degenerate mixture of two hyperfine

states, |↑〉 = |1〉 and |↓〉 = |3〉 in the ground state hyperfine manifold of 6Li in an

optical lattice. Here |i〉 is the ith lowest Zeeman sublevel. The global spin imbalance

Pg = (N↑ −N↓)/(N↑ +N↓) can be varied continuously from 0-0.9 by evaporating the

gas in the presence of a magnetic gradient leading to preferential loss of one of the

spin states. The final temperature is weakly affected by choice of imbalance.

To create the sample we load a magneto-optical trap (MOT) from a Zeeman

slower, then use a compressed MOT stage to load a ≈ 1 mK deep optical trap, and

evaporatively cool that atoms by lowering the optical trap depth near the 690 G

Feshbach resonance. We stop the evaporation before Feshbach molecules form and

transfer the atoms to a highly anisotropic light sheet trap where it undergoes further

evaporation near 300 G. Next, we transfer the atoms into a single layer of a 532 nm

accordion lattice with trapping frequency ωz = 2π× 19.9(3) kHz in the axial direction,

and utilize a 1070 nm beam to provide radial confinement. For further details, see

[87, 191] and section 2.1.

The spin populations are imbalanced by evaporating the mixture in a magnetic

gradient of up to 40 G/cm along the same direction as the magnetic bias field, which

we set in the range 75-500 G depending on the targeted imbalance. We then adjust

the bias field near 494 G which sets the scattering length to be 448(9) ao, where ao

is the Bohr radius, and adiabatically load into a 2D square lattice with a 50 ms long

ramp to a depth of 10.5(3) Er. Here, Er = h×14.66 kHz is the lattice recoil energy. We

estimate the tunneling rate to be t = h× 450(25) Hz at this lattice depth. For these
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parameters, we obtain U/t = 8.0(5), where strong antiferromagnetic correlations are

expected at half-filling in the balanced gas.

We detect site occupations using Raman fluorescence imaging with an exposure

time of 1200 ms, during which we collect ∼1000 photons/atom. We estimate the

imaging fidelity using the techniques described in section 2.2 and find a tunneling

rate of 0.4(2) % and a loss rate of 1.6(3) % per picture. In addition, while holding the

atoms in a deep lattice for spin manipulations and doublon hiding, we lose 2(1) % of

the atoms, leading to a net detection efficiency of 96 %.

4.4 Measuring spin correlations

Fluorescence images obtained with quantum gas microscopy techniques enable us

to identify singly occupied sites in the lattice, regardless of the spin state (see sec-

tion 2.4). Doubly occupied sites undergo light assisted collisions and appear empty.

We can also identify singly occupied sites where the atoms are projected onto a cho-

sen eigenstate of Sz by illuminating the cloud with a short pulse of resonant light

that ejects atoms in the other eigenstate (fig. 4.1B,C). By first converting atoms on

doubly occupied sites to deeply bound molecules, we ensure that they are not affected

by this light pulse and they are subsequently lost in light-assisted collisions during

imaging. From these images we extract the azimuthally-averaged density of atoms

on singly-occupied (s) sites in a particular spin (σ) state nsσ(r) and the total density

ns = ns↑+n
s
↓, shown in fig. 4.1D for an imbalanced gas. We observe a plateau in ns over

an extended region near the center of the trap, indicating a reduction in compress-

ibility owing to the charge gap. The deviation of ns from unity within this region is

primarily due to doublon-hole quantum fluctuations, which are non-negligible at our

interaction strength. We characterize the local polarization in terms of the measured

quantities ps = (ns↑ − ns↓)/(n
s
↑ + ns↓). This definition coincides with the true polar-
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ization in the absence of doubly occupied sites. At the accessible temperatures, the

local polarization is constant throughout the central reduced compressibility region.

We measure spin correlators along two different spin projections, both parallel

to the field, Cz
spin, and orthogonal to it, C⊥spin. The spin correlators between sites

separated by a displacement d = (dx, dy) are defined by eq. 3.17. S⊥ is the spin

along an undetermined direction in the plane orthogonal to the field, where rotational

symmetry ensures
〈
S⊥
〉

= 〈Sx,y〉. Similarly, C⊥spin(d) = Cx,y
spin(d).

Cz
spin(d) is obtained from the singles density correlators Cs(d), and the single-

component singles density correlators Cs,σ(d) according to eq. 2.11. The procedures

for measuring Cs and Cs,σ are described in detail in section 2.4.

To extract C⊥spin(d), we insert a radiofrequency pulse to coherently rotate the spins

by π/2 before initiating the measurement protocol. Because a direct rf transition

between states |1〉 and |3〉 is forbidden by selection rules we perform the π/2 spin

rotation using a two step protocol described below. After freezing tunneling dynamics

in a 55 Er lattice, we convert the |1〉 − |3〉 mixture to a |1〉 − |2〉 mixture by driving

a radio-frequency Landau-Zener transition between states |3〉 and |2〉 in 10 ms with

efficiency of 0.99(1). Next we hide all doublons in our sample by converting them

to molecules, employing a ramp across a narrow Feshbach resonance near 543 G (as

discussed in section 2.4.3). Then we either drive a π/2 spin rotation to measure

correlations for the spin component perpendicular to the effective magnetic field, or

omit this to measure correlations for the spin component parallel to the field.

4.5 Calibration of Hubbard parameters

We extract our lattice parameters from atom resolved images, as described in sec-

tion 2.2. We determine that the lattice axes are at an angle of 90.02(2)° and the lattice
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Figure 4.2: RF spectroscopy Hubbard interaction calibration. Spectroscopy
signal from a band insulator at lattice depth of 10.5 Er and scattering length 448 ao.
Shown is the transferred atom number in the center of the cloud (red), where sites are
doubly occupied and in the surrounding Mott insulator region (blue) where most sites
are singly occupied. To determine the interaction energy the final state interaction
must accounted for (see text).

100



constants are ax = 762 nm and ay = 741 nm, from which we extract the intersection

angle of the lattice beams, θ = 91.63(2)°, using eq. 2.30.

Using the lattice depth calibration procedure described in section 2.5.1 we infer

the depth of the lattice in which our measurements are performed to be 10.5(3) Er

and the retro-reflected electric field attenuation factor to be r = 0.54. From this we

obtain tight-binding tunneling values tx = 442 Hz, ty = 462 Hz (tx/ty = 0.96), and

td = 12 Hz. The reduction of the lattice depth across the cloud due to the Gaussian

profile of the lattice beams (see section 2.5.1) leads to an increase in the tunneling by

10 % at the edge of the cloud compared to the central value.

We measure the interaction energy U using radio frequency spectroscopy (fig. 4.2).

We transfer atoms from state |1〉 to |2〉 and resolve the frequency shift between singly

and doubly occupied sites. We determine

U13 = δU
a13

a13 − a23

, (4.1)

taking into account a small correction due to weak final state interactions. The

experimentally measured value agrees with the value determined from band structure

calculations including higher band corrections [192] to within 10 %.

4.6 Spin canting at half-filling

We observe short-range canted antiferromagnetism at half-filling with stronger spin

correlations in the direction orthogonal to the magnetization, in contrast to the spin-

balanced case where identical correlations are measured for any projection of the spin.

To investigate the dependence of the spin correlations on ps, we varied the global

polarization Pg and extracted the correlations in the half-filled central region. The

measured nearest and next-nearest-neighbor correlators C⊥,zspin are shown in fig. 4.3A

and the correlator anisotropies, defined as A = 1−Cz
spin/C

⊥
spin, are shown in fig. 4.3B.
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For an almost unpolarized gas, with local polarization ps = 0.02(4) at half-filling, we

find isotropic correlations: A = −0.06(7) for the nearest-neighbor and A = 0.0(2) for

the next-nearest-neighbor. The consistency of these values with zero verifies the SU(2)

spin symmetry of the Fermi-Hubbard Hamiltonian at h = 0. As the polarization is

increased, we observe an overall decrease in correlations, with Cz
spin decreasing faster

than C⊥spin, leading to growing nearest-neighbor anisotropy with polarization.

The system’s preference to build correlations in the plane orthogonal to the field

can already be understood at the level of a classical Heisenberg model because spins

oriented with the staggered magnetization in the xy-plane can lower their energy

by uniformly canting in the direction of the field. In the quantum system, strong

quantum fluctuations in two-dimensions reduce the magnitude of the nearest-neighbor

correlator in the balanced gas from 1 to 0.36 in the ground state [69], and thermal

fluctuations and imaging fidelity further reduce it to the experimentally measured

value of 0.207(4). At non-zero polarization, we observe that the correlator anisotropy

is stronger when the sites are further apart. For example, at local polarization ps =

0.48(4), A = 0.38(9) for the nearest-neighbor, while A = 0.8(2) for the next-nearest-

neighbor. The increase of the correlation anisotropy with distance can be partly

understood by considering what happens at lower temperatures as we approach the

BKT transition. There the C⊥spin correlations become long range while the Cz
spin do

not, so at long distance A approaches one.

We compare our measurements to results from determinantal quantum Monte

Carlo (DQMC) [193, 194] and numerical linked cluster expansion (NLCE) [195, 196]

simulations of the Fermi-Hubbard model at half-filling in the presence of a chemical

potential imbalance with the temperature as a free parameter. For the balanced

gas, the measured nearest-neighbor correlators give a fitted temperature of T/t =

0.40(5). The temperature increases with polarization, rising to T/t = 0.57(5) at local

polarization ps = 0.77(3). This trend may be caused by a reduction of the efficiency
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of evaporative cooling with increasing spin imbalance. The calculated anisotropy is

almost independent of temperature over this range, and shows excellent agreement

with the experiment (fig. 4.3B). The temperatures obtained from the spin correlations

agree with those calculated from the singles density correlations (see section 4.9).

Insight into the range of the antiferromagnetic order can be gained by examining

2D plots of the spin correlators as a function of the displacement vector between

the sites (fig. 4.4). The checkerboard pattern is visible for displacements of up to

four sites in the almost unpolarized gas, and the overall decrease of all correlations

with polarization, as well as the suppression of Cz
spin relative to C⊥spin is evident.

The C⊥spin correlations remain antiferromagnetic at all polarizations, but the Cz
spin

correlations can be viewed as the density correlations of the gas of minority spins [197]

whose modulation becomes longer wavelength as the density of this gas decreases (see

section 4.7). This leads to a change in the sign of Cz
spin(1, 1) near local polarization

ps = 0.6 (figs. 4.3A and 4.4). The observation of this percent-level negative correlation

is only possible because of the superb sensitivity of quantum gas microscopy.
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4.7 Sign change of spin z-correlation for large po-

larizations

To understand why Cz
spin(1, 1) becomes negative near ps = 0.6 at half filling, it is

instructive to consider what happens in the Heisenberg model with a nearly fully

polarized gas. We can regard the fully polarized gas as a vacuum state and the

minority spins as a dilute gas of magnons [197, 198]. These magnons are bosons and

can form a Bose-Einstein condensate (BEC) at low temperatures. We will find that

the BEC off-diagonal order is associated with the spin correlations perpendicular to

the magnetization, and the density correlation of the magnons are associated with

the spin correlations parallel to the magnetization.

To make this argument more concrete, we rewrite the Heisenberg Hamiltonian

using operators defined by β†i = S+
i , βi = S−i and Szi = β†i βi − 1/2,

H =
J

2

∑
〈i,j〉

(
β†i βj + β†jβi

)
+
∑
i

(h− 4J) β†i βi + J
∑
〈i,j〉

β†i β
†
jβiβj. (4.2)

The βi and βj satisfy bosonic commutation relations for i 6= j. To avoid difficulty

at i = j we introduce an infinite on-site repulsion, or hard-core constraint, and can

then regard β†i as the creation operator for a boson on site i [197]. From the middle

term in Eq. 4.2, we see the field h is the chemical potential of the magnons (up to a

constant offset). The last term describes nearest-neighbor repulsion of magnons. The

first term describes the bosons tunneling. Transforming to momentum space, this

term becomes
∑

q ε(q)β
†
qβq with ε(q) = J (cos(qxa) + cos(qya)) where a is the lattice

constant. In contrast to the typical case, the tunneling term here is positive and

the condensate forms at the band minimum, q = (π, π). Condensation is signaled

by non-zero expectation value of off-diagonal density matrix elements. For system of
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volume V and total particle number N these elements are

〈
β†i βi+d

〉
=

1

V

∫
dq exp (iq · d/~)

〈
β†qβq

〉
=

N

V
(−1)dx+dy . (4.3)

Using the identity β†i βi+d+β†i+dβi = 2
(
Sxi S

x
i+d + Syi S

y
i+d

)
, we see the BEC off-diagonal

order is associated with spin correlations perpendicular to the magnetization, and the

anti-ferromagnetic checkerboard is associated with the condensate quasimomentum,

(π, π).

The spin correlations parallel to the magnetization are associated with the density

correlations of the magnons, which can be written
〈
β†i βiβ

†
i+dβi+d

〉
c

=
〈
Szi S

z
i+d

〉
c
∝

Cz
spin(d). These are the density correlations of a liquid of bosons on the lattice, with

hard core exclusion and nearest-neighbor repulsion. These are expected to be typical

liquid correlations, starting negative at short distances and oscillating and damping

with distance, first becoming positive at a distance of order the inter-particle spacing.

As we go to high polarization and thus low density of these bosons, this inter-particle

distance grows and moves beyond the diagonal-neighbor distance, resulting in the

sign change in Cz
spin(1, 1).

4.8 Spin correlations versus doping

Introducing doping decreases the magnitude of the spin correlations, but canted anti-

ferromagnetism persists for small dopings. For fixed Zeeman field h, both Cz
spin(1, 0)

and C⊥spin(1, 0) decrease with increasing doping (decreasing singles filling ns), as shown

in fig. 4.5. For small but finite field, C⊥spin is more negative than Cz
spin at half-filling due

to canting, and this anisotropy persists over a finite range of dopings. For example,

at a field of h/t = 0.52 canted antiferromagnetic correlations are present down to a
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doping of ns ≈ 0.6 (fig. 4.5B). Once the doping is large enough (ns < 0.6 in fig. 4.5B),

the anisotropy is destroyed. This behavior changes at extremely large fields. For large

enough fields, canted antiferromagnetic correlations are still present near half-filling,

but for large doping Cz
spin becomes more negative than C⊥spin. This effect is visible in

fig. 4.5C at h/t = 0.94.
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Figure 4.5: Spin correlators versus doping. Nearest-neighbor spin correlators
Cz

spin (yellow) and C⊥spin (blue) versus singles density ns for different Zeeman fields, h.
Experimental values (points) and 8th order NLCE results (solid and dashed lines) are
shown for several local polarizations at half-filling. A, ps = 0.02, h/t = 0.02, T/t =
0.38. B, ps = 0.48, h/t = 0.52, T/t = 0.38. C, and ps = 0.77, h/t = 0.94, T/t = 0.53.
The Zeeman field used in NLCE is determined from the singles polarization at half-
filling. Experimental data averaged over ∼50 images and azimuthally. Error bars are
standard error of the mean.

The suppression of C⊥spin relative to Cz
spin at large doping and large fields reflects

the transition to a nearly fully polarized Fermi gas at low densities. In this limit,

Cz
spin(d) → 2C↑(d), the density correlator of the majority atoms. This correlator

is negative for all displacements, as demonstrated by eq. 3.38. On the other hand,

C⊥spin contains only mixed spin operators, such as
〈
c†i↑ci↓c

†
i+d,↑ci+d,↓

〉
which vanish in

a polarized gas.

The regime of finite doping and low temperatures considered here is difficult for

NLCE, which fails for a range of dopings ns ≈ 0.2 − 0.5 for T/t ≈ 0.4 as shown in
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fig. 4.5A and B. For higher temperatures, such as T/t = 0.53 in fig. 4.5C, convergence

is restored.

4.9 Singles density correlations

In addition to spin correlations our data gives access to density correlations between

singly occupied sites, also referred to as local moment correlations, defined by eq. 2.3.

Previous analysis of this correlator in a balanced gas revealed a dominant positive

contribution at half-filling from doublon-hole virtual excitations and a smaller nega-

tive contribution from hole-hole correlations due to Pauli repulsion [68]. In fact, this

positive correlation is already present in the non-interacting system (see section 3.2.2

and fig. 3.2C), but the doublon-hole virtual excitations enhance the strength of the

correlator.

We observe the behavior of the nearest-neighbor singles density correlations as the

effective magnetic field (polarization) is varied. For increasing polarization, singles

density correlations decrease as Pauli blocking suppresses double occupancy in the

gas. The results of NLCE and DQMC calculations at U/t = 8 show good agreement

with the data using the same temperature range extracted from the spin correlations,

as shown in fig. 4.6.

In the inset of fig. 4.6, we show the singles density correlation versus singles density

for different polarizations. As was observed in the balanced case, the correlator

changes sign as the filling is reduced, an effect that has been attributed to Pauli

repulsion in the metallic regime [68]. This repulsion becomes more pronounced as

the polarization is increased, leading to negative correlations over a wider range of

fillings. This interpretation is further supported by our calculations of this quantity

in the non-interacting Fermi gas, where we find qualitatively similar behavior (see

section 3.2.2 and fig. 3.2C).
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Figure 4.6: Singles density correlations. Nearest-neighbor singles density corre-
lations versus local singles polarization ps at half-filling. We show NLCE (edges of
shading) and DQMC (small circles) results corrected for our detection efficiency, and
uncorrected NLCE results (solid lines). We show a temperature band from T/t = 0.38
to 0.53, which is determined from spin correlators. Inset, Singles density correlations
versus density for ps = 0.02 (yellow), 0.48 (purple), and 0.94 (red). Lines are guides
to the eye. Error bars standard error of the mean. Experimental data averaged over
∼50 images and azimuthally.
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4.10 Magnetic susceptibility versus polarization

The polarization profile of the imbalanced gas in the trap gives insight into the mag-

netic susceptibility of the Fermi-Hubbard model in the doped regime. For strong

interactions we observe that the in-trap polarization profile can exhibit nonmono-

tonic behavior as shown in fig. 4.7A for U/t = 14.7(8) obtained by increasing the

scattering length to 793(12) ao. For these experiments, we extract the true local po-

larization p = (n↑ − n↓)/(n↑ + n↓), rather than ps. The local polarization shows a

shallow rise near the edge of the half-filled region then drops in the metallic region,

before rising rapidly at the edge of the cloud.
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Figure 4.7: Nonmonotonic dependence of local polarization on doping at
strong interactions. A, Azimuthally averaged density profiles showing the total
density n (blue), n↑ (green), n↓ (red), and p (gray) for a spin-imbalanced cloud at
U/t = 14.7(8) with global polarization Pg = 0.29(3). B, Local polarization as a
function of density (gray circles) assuming linear response. NLCE (blue squares) at
U/t = 15 for T/t = 0.35 and h/t = 0.20. DQMC results (small circles) at U/t = 15
for T/t = 0.42 and h/t = 0.22 (red), T/t = 0.36 and h/t = 0.20 (orange) and
T/t = 0.42 and h/t = 0.20 (green). Experimental data averaged over ∼55 images
and azimuthally. Error bars standard error of the mean.
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These effects can be understood qualitatively in terms of the magnetic suscepti-

bility of the gas at different fillings,

χ =
1

n

∂ 〈Sz〉
∂h

∣∣∣∣
µ̄

, (4.4)

because the susceptibility is proportional to the local polarization χ = p
2h

. Here

the field h is constant across the trap since the gas is in chemical equilibrium. At

half-filling, the susceptibility is expected to be that of an antiferromagnet χAF ∝

1/J = U/4t2, while for small doping at our temperatures there is a non-degenerate

gas of holes in the lower Hubbard band and as a result a weak maximum in the

susceptibility. At intermediate hole doping the susceptibility crosses over to that of a

metal, χm ∝ 1/t, which is smaller than χAF for large U/t. Similar behavior has been

observed in the cuprates in the normal phase [199, 200, 201] and studied theoretically

[202, 203]. At even lower filling, the gas is non-degenerate and there is no filled Fermi

sea to hinder spins from aligning with the effective field, leading to an enhanced

magnetic susceptibility.

We show the polarization versus density in fig. 4.7B and compare it with NLCE

and DQMC calculations in the local density approximation, which reproduce the

nonmonotonic behavior described above. The strength of the field, h/t = 0.21(1),

is determined from the polarization at half-filling, which exhibits only a weak de-

pendence on temperatures for T/t < 0.5. These calculations are near the limit of

these numerical techniques for the doped system, as evidenced by the region from

n ≈ 0.2 − 0.5 where NLCE fails to converge. Comparing DQMC and NLCE in this

challenging regime controls for systematic errors.
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4.11 Relationship between susceptibility and local

polarization

This analysis of the polarization relies on the claim that the local polarization is

proportional to the spin susceptibility of the gas. This connection holds in the linear

regime, where the spin imbalance can be approximated by,

〈Sz〉 =
∂ 〈Sz〉
∂h

∣∣∣∣
µ̄

h. (4.5)

We can rewrite this equation using the polarization and spin susceptibility as p = 2hχ,

which verifies the relationship we asserted above.
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Figure 4.8: Linearity with Zeeman field. A, Local polarization at half-filling
versus Zeeman field. NLCE results for T/t = 0.15 (red), 0.35 (orange), 0.49 (green)
and 0.67 (blue) at U/t = 15.0. The magnetic field is measured in units of the tunneling
energy, t. B, NLCE results for p/2h (dark-blue) and χ (light-blue) versus density n
for U/t = 15.0 at T/t = 0.35 and h/t = 0.20.

We numerically verify that we are in the linear regime at half-filling by considering

the dependence of the local polarization p on the field h. This plot is shown in fig. 4.8A
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for T/t = 0.15 − 0.67 at U/t = 15.0. The experimental polarization at half-filling,

p ≈ 0.3, falls within the linear regime for even the highest temperature considered.

To verify that we are in the linear regime away from half-filling, we compare the

polarization to the spin-susceptibility determined from NLCE simulations using the

fluctuation-dissipation theorem (see eq. 3.46) in fig. 4.8B. The susceptibility deter-

mined this way differs by less than 10 % from p/2h. The missing points in this curve

are dopings where NLCE failed to converge.

4.12 Outlook

In this chapter we have presented the first experimental study of a 2D spin-imbalanced

Fermi-Hubbard system in a regime near the edge of what state-of-the-art numerical

techniques can simulate. The high effective fields reached in our experiments allow us

to explore canted antiferromagnetic correlations above the BKT transition and to ob-

serve an interesting dependence of the local polarization on doping. Future directions

for both experimental and theoretical work include investigation of spin-imbalance in

the attractive 2D Hubbard model where Fulde-Ferrell-Larkin-Ovchinnikov superfluid

correlations should be detectable at the entropies achieved in repulsive experiments

[204] and mapping out the BKT transition in the imbalanced repulsive gas phase

diagram which would require lower temperatures. Finally, the achievement of cold

spin-imbalanced clouds in an optical lattice suggests a new route for local entropy

reduction using adiabatic demagnetization cooling, a technique previously demon-

strated in bosonic lattice experiments [205].
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Chapter 5

Bad metallic transport in a

Fermi-Hubbard system

Portions of this chapter are based on work previously published as

P. T. Brown, D. Mitra, E. Guardado-Sanchez, R. Nourafkan, A. Reym-

baut, C.-D. Hébert, S. Bergeron, A.-M. S. Tremblay, J. Kokalj, D. A.

Huse, P. Schauß, and W. S. Bakr. Bad metallic transport in a cold atom

Fermi-Hubbard system. Science 363, 6425, 379–382 (2019).

Although experiments have studied a variety of static properties of the Fermi-

Hubbard model, exploring the full phase diagram requires measurement of dynamical

properties. This is because many of the interesting phases in the cuprate phase di-

agram, which we expect may also exist in the Fermi-Hubbard model, are defined in

terms of such dynamical observables and it is not clear that static observables can

provide the same information, although this is also an active area of research. There-

fore, in this chapter and the next we focus on developing new experimental techniques

to explore dynamical properties of the Fermi-Hubbard model using a quantum gas

microscope. In this chapter, we focus on measuring the resistivity of a repulsive

Fermi-Hubbard gas at finite doping — parameters that would put us in the “strange
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metal” regime in a cuprate system. We investigate whether or not similar strange

metal phenomenology occurs in a Fermi-Hubbard system.

Transport measurements are both the most common experimental and simplest

conceptual techniques for exploring the properties of materials. The basic premise

is to connect a macroscopic sample to a number of terminals, then connect some of

these terminals to reservoirs or sources (of voltage, current, heat, etc.), and observe

the response at other terminals. Transport experiments have been instrumental in the

discovery a variety of interesting phenomena, including the quantum Hall effect [206],

fractional quantum Hall effect [207], and superconductivity among many others. It

is illustrative of the influence of these techniques that superconductors, which are

quantum materials with a variety of interesting characteristics, are primarily defined

in terms of their charge transport properties.

Transport measurements reveal information about the underlying nature of the

constituents of a material — for example Hall voltage measurements can reveal the

sign of charge carriers, and similar techniques led to the discovery of fractionally

charged quasiparticles. Recently, heat conductivity measurements may even have

exposed information about the nature of the wave function for certain fractional

quantum Hall states [208]. Transport measurements can also reveal situations where

strongly interacting quantum systems no longer behave as if they are composed of

discrete particles. In such situations, many of the most common techniques for study-

ing transport break down, such as the Boltzmann transport equation, and a general

framework for understanding such systems is lacking. Despite the lack of a unifying

theoretical framework, there are hints that various incoherent systems may have deep

connections to one another [209, 210].

Transport coefficients can often be understood as unequal-time correlation func-

tions, as discussed in section 3.7. These objects are challenging to calculate theo-

retically, particularly for strongly interacting quantum systems. This poses a diffi-
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cult challenge to understanding strongly-correlated transport using existing theory

techniques, as calculations cannot probe low temperature physics. We adopt a com-

plementary approach by using a quantum simulator to explore charge transport in

the Fermi-Hubbard model at temperatures below what is accessible to some exact

theory methods. In this chapter, we find evidence for strange metallic transport in

this model which shares much of the phenomenology observed in real materials.

5.1 Transport in strongly-interacting quantum

systems

Strong interactions in many-body quantum systems complicate the interpretation of

charge transport in such materials. To shed light on this problem, we study transport

in a clean quantum system: ultracold 6Li in a 2D optical lattice, a testing ground for

strong interaction physics in the Fermi-Hubbard model. We determine the diffusion

constant by measuring the relaxation of an imposed density modulation and model-

ing its decay hydrodynamically. The diffusion constant is converted to a resistivity

using the Nernst-Einstein relation. That resistivity exhibits a linear temperature de-

pendence and shows no evidence of saturation, two characteristic signatures of a bad

metal. The techniques we develop here may be applied to measurements of other

transport quantities, including the optical conductivity and thermopower.

In conventional materials, charge is carried by quasiparticles and conductivity is

understood as a current of these charge carriers developed in response to an external

field. For the conductivity to be finite, the charge carriers must be able to relax

their momentum through scattering. The Boltzmann kinetic equation in conjunction

with Fermi liquid theory provides a detailed description of transport in conventional

materials, including two trademarks of resistivity. The first is the Fermi liquid pre-

diction that the temperature-dependent resistivity ρ(T ) should scale like T 2 at low
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temperature [175]. The second is that the resistivity should not exceed a maximum

value ρmax, obtained from the Drude relation assuming the Mott-Ioffe-Regel (MIR)

limit which states that the mean free path of a quasiparticle cannot be less than the

lattice spacing [211, 212]. This resistivity bound itself is sometimes referred to as the

MIR limit.

Strong interactions can however lead to a breakdown of Fermi liquid theory. One

signal of this breakdown is anomalous scaling of ρ with temperature, including the

linear scaling observed in the “strange metal” state of the cuprates [213] and other

anomalous scalings in d- and f - electron materials [214]. Another is the violation of

the resistivity bound ρ < ρmax, which is observed in a wide variety of materials [215].

Additionally, interactions may lead to a situation where the momentum relaxation

rate alone does not determine the conductivity, in contrast to the semiclassical Drude

formula, generalizations of which hold for a large class of systems called coherent

metals [210]. Approaches introduced to understand these anomalous behaviors in-

clude hidden Fermi liquids [216], marginal Fermi liquids [217], proximity to quantum

critical points [218] and associated holographic approaches [219], and many numerical

studies of model systems, most notably the Hubbard [220] and t− J [170] models.

Disentangling strong interaction physics from other effects, such as impurities and

electron-phonon coupling, is difficult in real materials. Cold atom systems are free of

these complications, but transport experiments are challenging due to the finite and

isolated nature of these systems. Most fermionic charge transport experiments have

focused on either studying mass flow through optically structured mesoscopic devices

[221, 222, 223, 224] or bulk transport in lattice systems [78, 79, 80, 81, 84]. Here,

we explore bulk transport in a Fermi-Hubbard system by studying charge diffusion,

which is a microscopic process related to conductivity through the Nernst-Einstein

equation σ = χcD, where D is the diffusion constant and χc =
(
∂n
∂µ

)∣∣∣
T

is the com-

pressibility. This relation requires only the assumption of linear response and absence
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of thermoelectric coupling and does not rest on assumptions concerning quasiparti-

cles.

5.2 Experimental preparation

We realize the 2D Fermi-Hubbard model using a degenerate spin-balanced mixture

of two hyperfine ground states of 6Li in an optical lattice which we label |↑〉 = |1〉

and |↓〉 = |3〉 [70]. Our system is well described by the Hubbard Hamiltonian given

in eq. 3.2 with h = 0. Our lattice beams produce a harmonic potential, which leads

to a varying atomic density in the trap. To obtain a system with uniform density,

we flatten the trapping potential over an elliptical region of mean diameter 30 sites

using a repulsive potential created with a spatial light modulator (for more details

see section 2.7). We superimpose an additional sinusoidal potential that varies slowly

along one direction of the lattice with a controllable wavelength (fig. 5.1, A and B).

By adiabatically loading the gas into these potentials, we prepare a Hubbard

system in thermal equilibrium with a small amplitude (typically 10 %) sinusoidal

density modulation. The average density in the region with the flattened potential is

the same with and without the sinusoidal potential. Next, we suddenly turn off the

added sinusoidal potential (but not the flattening potential) by changing the DMD

image in less than 10µs, and observe the decay of the density pattern versus time

(fig. 5.1, C and D). We measure the density of a single spin component, 〈n↑〉 using

techniques described in [70], giving us access to the total density through 〈n〉 = 2 〈n↑〉.

We work at average total density 〈n〉 = 0.82(2). This value is close to a conjectured

quantum critical point in the Hubbard model [225]. Our lattice depth is 6.9(2) Er,

where Er/h = 14.66 kHz is the lattice recoil. We estimate the tunneling rate t/h =

925(10) Hz from a band structure calculation. We adjust the Hubbard interaction by

tuning the bias magnetic field in the vicinity of the Feshbach resonance centered near
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690 G. We work at 616.0(2) G where the scattering length is a13 = 1070(10) ao and the

interaction energy is U = 7.0(7) kHz, determined from a spectroscopic measurement

(see section 4.5). These parameters lead to an on-site interaction to tunneling ratio

U/t = 7.4(8), which is in the strong-interaction regime and close to the value that

maximizes antiferromagnetic correlations at half-filling [196].

To image the density of a single spin state, we freeze the motion of the atoms

by ramping the lattice depth to 60 Er in approximately 100 µs. We check this ramp

effectively freezes the atomic motion by comparing the density amplitude modulation

pattern without turning off the DMD potential, and with turning off the DMD po-

tential and then immediately ramping the lattice depth for our shortest wavelength

at our lowest temperatures (where the modulation decays fastest). The modulation

depths agree, indicating that the atomic motion is effectively frozen well before the

lattice reaches 60 Er.

5.3 Density modulation decay

We observe the decay of the initial sinusoidal density pattern over a period of a

few tunneling times. The short timescale ensures that the observed dynamics are

not affected by the inhomogeneous density outside of the central flattened region

of the trap. To obtain better statistics, we apply the sinusoidal modulation along

one dimension and average along the other direction (fig. 5.1, A and C). We fit the

average modulation profile to a sinusoid, where the phase and frequency are fixed by

the initial pattern (fig. 5.2A). The time dependence of the amplitude of the sinusoid

quantifies the decay of the density modulation, fig. 5.2B. Our experimental technique

is analogous to that of [130], which studied the decay of a spin pattern in a bosonic

system.
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Figure 5.1: Measuring transport in the Hubbard model. A, Top: exemplary
single shot fluorescence image of the atomic density for one spin component. Field of
view diameter is approximately 60 µm. Bottom: schematic of the setup for generating
optical potentials. Far-off-resonant light is projected onto a digital micromirror device
(DMD) and the resulting pattern is imaged onto the atoms using a high-resolution
objective. We project a sinusoidally-modulated potential along one direction. B,
One-dimensional cuts along the projected potential. The DMD is used to flatten the
trap and project a sinusoidally-modulated potential (leftmost image). The confining
potential comes from the optical lattice. After initial preparation, the sinusoidal
potential is suddenly turned off, but the flattening potential is not. C, Average density
of a single spin component, 〈n↑〉, versus time for approximately 30 images. Initially,
the system is in thermal equilibrium with a spatially modulated density (leftmost
image, 0µs decay time). Immediately after the sinusoidal potential is turned off, the
system is no longer in equilibrium but the density has not yet changed (second from
left, 0µs decay time). The density modulation decays with time (third from left,
50µs decay time) until it is no longer visible (fourth from left, 500µs decay time).
The central flattened region of the potential is marked by a white ellipse. The field of
view is approximately 75 µm× 75 µm. D, Atomic density from C averaged along the
direction orthogonal to the modulation in the central flattened region of the potential.
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Figure 5.2: Decay of density modulation pattern versus time. A, Cloud
profiles averaged along the direction of the modulation (points) and sinusoidal fits
(lines) for modulation wavelength 8.1 sites and times 0 ~/t (top), 0.6 ~/t (second from
top), 1.7 ~/t (third from top), and 3.8 ~/t (bottom). The average value obtained from
the sinusoid fit has been subtracted. B, Sinusoid fit amplitudes (points) versus decay
time for modulation periods 8.1 (blue), 11.8 (green), 15.6 (yellow), and 18.7 (red)
sites. Each curve is scaled by the initial modulation amplitude. Lines are obtained
from a simultaneous fit of the diffusion constant, D, and current relaxation rate, Γ,
to all wavelengths and times. Different shaped points for period 8.1 correspond to
different panels in A, 0 ~/t (square), 0.6 ~/t (triangle), 1.7 ~/t (pentagon), and 3.8 ~/t
(diamond). The temperature for all wavelengths and decay times is T/t = 0.57(8).
Each point is the average of approximately 30 images. Error bars standard error of
the mean.
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The decay of the sinusoidal density pattern versus the wavelength of the modu-

lation becomes consistent with diffusive transport at long wavelengths. In diffusive

transport, the amplitude of a density pattern at wave vector k = 2π/λ will decay

exponentially with time constant τ = 1/Dk2, where D is the diffusion constant.

We observe exponentially decaying amplitudes with diffusive scaling for wavelengths

longer than 15 sites. However, the decay curves are flat at early times, showing clear

deviation from exponential decay. For short wavelengths, we observe deviations from

diffusive behavior in the form of underdamped oscillations, which can be understood

as the damped limit of sound waves. Both of these effects are related to the fact

that a density modulation does not instantaneously create a current, as implied by

the diffusion equation. Rather, a current requires a finite amount of time to reach an

equilibrium value after the creation of a density modulation.

5.4 Atomic tunneling time

We find that the density modulation decay times are in the range 2−6~/t in fig. 5.2B.

To establish a reference for this time scale, we estimate how long it takes a single

fermion on a lattice to tunnel. Suppose we are working in 1D and initialize one atom

at site n and time T = 0. We want to calculate the probability an atom is on site m

at time T , i.e.
〈
0
∣∣ cn(0)c†m(T )

∣∣0〉.
We can write the time evolution of a particle initialized on site m using the fact

the momentum states are eigenstates with energy given by the dispersion εk,

c†m(t) |0〉 =
∑
k

e−iεkT e−imkc†k |0〉 . (5.1)
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Using the above equation to evaluate the time dependence and then Fourier trans-

forming back to position space yields

〈
0
∣∣ cn(0)c†m(t)

∣∣0〉 =
∑
k

e−iεkT e−imk
〈

0
∣∣∣ cnc†k ∣∣∣0〉 (5.2)

=
∑
k,l

e−iεkT e−imkeilk
〈

0
∣∣∣ cnc†l ∣∣∣0〉 (5.3)

=
∑
k

e−iεkT ei(n−m)k. (5.4)

Now we specialize to a 1D lattice system with dispersion εk = −2t cos(k) and

apply the Jacobi-Anger identity,

∑
k

ei2t cos(k)tei(n−m)k =
∑
k,l

ilJl(2tT )eilkei(n−m)k (5.5)

=
∑
l

ilJl(2tT )δn−m+l (5.6)

= im−nJm−n(2tT ). (5.7)

Here Jl is the lth Bessel function.

We can estimate the tunneling rate by determining when the probability that

the atom is one site away from its initial position is maximum. The J1 has its first

maximum at 2tT ≈ 1.8412, which implies

T ≈ 0.94 ~/t , (5.8)

or this particle tunnels roughly once every ~/t .

This estimate also applies to a separable 2D lattice. Our science lattice is not

separable due to td cos(kx ± ky) terms in the dispersion relation (see eq. B.25). The

above analysis does not strictly apply, but it is a good approximation because the

diagonal tunneling td is extremely small.
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The time scale for this non-interacting problem matches reasonably well with that

observed in fig. 5.2B. We roughly expect that for a density pattern of wavelength λ

particles from the maximum density region must reach the minimum, i.e. they must

travel a distance λ/2.

5.5 Linear response theory

In the experiment we apply a spatially varying potential which couples to the atomic

density, and then observe the effect this has on the atomic density. This implies

that the dynamics can be understood in terms of the dynamical density susceptibility

function. We make this connection here by describing the experiment in terms of the

linear response theory introduced in section 3.7.

In the linear response formalism, we consider the effect of perturbing the system

with the potential

vi(t) = F (t) cos(k · ri) (5.9)

F (t) = Foe
ηtθ(−t), (5.10)

where we have supposed F is turned on slowly starting at t = −∞ and switched off

suddenly at t = 0. The turn on speed is parameterized by η, and we work in the limit

η → 0. The frequency domain representation of this force is F (ω) = Fo
iω+η

.

Using the notation introduced in section 3.7, we identifying the potential as the

generalized force h(ri, t) = vi(t) which is conjugate to the density response, M(ri, t) =

ni(t). We observe the system response by measuring the density, so O(ri, t) = ni(t).

Following eq. 3.64, the response function is given by

Φnn(k, t− t′) = − i
~

Θ(t− t′) 〈[nk(t), n−k(t′)]〉 (5.11)
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where ri is the position of site i, nk is the spatial Fourier transform of the density,

and we use translational invariance of the unperturbed system, which ensures that

only vk contributes to the density response at k. Note the nk =
∑

q c
†
k+qcq is the

Fourier transform of the real space density operator, and not the momentum space

occupation operator.

The density time response can be written in terms of the susceptibility as

〈δnk(t)〉 =

∫
dω χ(k, ω)F (ω)e−iωt, (5.12)

following from eqs. 3.60 and 3.62. To make further progress, an explicit form of χ

is required. For example, we could calculate the dynamical response of the non-

interacting Fermi gas using the expression we found for χ in eq. 3.34. In many

cases, χ has a generic form in the long wavelength, long time limit determined by

hydrodynamics. We consider this connection in the next section.

5.6 Phenomenological hydrodynamic model

To unify the description of modulation decay at all wavelengths considered in fig. 5.2,

we develop a hydrodynamic description that accounts for conserved particle number

and a finite momentum (or current) relaxation rate. Hydrodynamics is a long wave-

length, low frequency limit which applies when there are few conserved quantities,

typically only mass, momentum, and energy [219]. This is the situation in many

isolated systems, with a notable exception being integrable systems, because these

possess a large number of conserved quantities which must be accounted for. In most

real materials electrons cannot be treated hydrodynamically because of couplings to

phonons and lattice defects which can absorb energy or momentum.

The simplest hydrodynamic theory we can write down for an isolated Hubbard

system accounts for conservation of mass and weak relaxation of momentum due to
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umklapp scattering, and assumes that energy is decoupled from these two. The two

equations describing this are

∂tn(r, t) = −∇ · J(r, t) (5.13)

∂tJ(r, t) = −Γ (D∇n(r, t) + J(r, t)) , (5.14)

where the first equation is the continuity equation, and the second equation reduces

to Fick’s law, J(r, t) = −D∇n(r, t), in the steady state (∂tJ = 0). In the limit of

strong current relaxation, a density modulation instantly creates a current satisfying

Fick’s law. However, for a finite relaxation rate Γ, the current responds with a time

lag described by eq. 5.14. We can alternatively understand eq. 5.14 as a momentum

“conservation” equation analogous to the Navier-Stokes equation including a weak

momentum relaxation rate Γ, zero viscosity, and neglecting terms of higher order in

linear response.

This model leads to a differential equation for the density decay,

∂2
t n+ Γ∂tn+ ΓDk2n = 0, (5.15)

where Γ is the momentum-relaxation rate and D is the diffusion constant. This

oscillator model crosses over from an underdamped to an overdamped (approximately

diffusive) regime at a modulation wavelength 4π
√
D/Γ. In a system that can be

described using quasiparticles,
√
D/Γ is proportional to the mean free path.

In the overdamped limit, Γ�
√

ΓDk, eq. 5.15 describes diffusive behavior nk(t) ∝

e−Dk
2t for finite k. In the underdamped limit, it describes sound waves whose ampli-

tude decays at rate Γ/2. If we take the limit k = 0, the current decays exponentially

at rate Γ, confirming that this is the current relaxation rate. The sound wave and cur-

rent relaxation rates differ because the sound wave carries both kinetic and potential

energy, shared equally, whereas the uniform (k = 0) current excitation carries only
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kinetic energy. As only the kinetic energy is damped, the sound wave loses energy at

half of the rate of the uniform current excitation.

This hydrodynamic model implies a specific form of the density susceptibility

function χ. The density decay dynamics determined by eq. 5.15 must match the

dynamics predicted by linear response through eq. 5.12. This implies χ must be the

frequency space representation of the Green’s function for eq. 5.15, which is

χ(k, ω) =
χc

1− iω
k2D
− ω2

k2DΓ

, (5.16)

where χc is the charge compressibility, D is the diffusion constant, and Γ is the current

relaxation rate [180].

5.7 Determining experimental hydrodynamic pa-

rameters

Instead of assuming that D and Γ are dependent parameters linked through a Drude

formula, as would be the case in a system that can be described using quasiparticles,

we treat them separately and determine both by simultaneously fitting the ampli-

tude decay patterns for all wavelengths to the hydrodynamic model data at fixed

temperature. The results of such a fit are shown in fig. 5.2B.

We take images at a series of wave vectors and times (ki, tij), where i = 1, ..., N

and j = 1, ..., ji, and determine a series of modulation amplitudes a(ki, tij) and un-

certainties σij using the sinusoid fits illustrated in fig. 5.2. For a given wave vector,

we first fit the earliest time (ti1 = 0) modulation pattern with the amplitude, period,

phase, and offset as free parameters. For later times, we fix the phase and the period

leaving only the amplitude and the offset as free parameters.
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To compare our measurements with the hydrodynamic model, we consider the

solutions to eq. 5.15 which satisfy the boundary condition ṅ(t = 0) = 0,

n(Γ, D,A, k, t) =
A

2

(
eω̃t + e−ω̃t

)
e−Γt/2, (5.17)

where ω̃ =
√

Γ2

4
− ΓDk2, and A is the amplitude. These can obtained by applying

χ given in eq. 5.16 to eq. 5.12. In the underdamped limit eq. 5.17 gives a damped

cosine. In the overdamped limit it yields a product of a hyperbolic cosine factor and

an exponential factor.

Finally, we determine Γ, D, and Ai, i = 1, ..., N with a nonlinear least squares fit

which minimizes

δ2 =
N∑
i=1

ji∑
j=1

|a(ki, tij)− n(Γ, D,Ai, ki, tij)|2

σ2
ij

. (5.18)

We determine the uncertainty in the fit parameters using a bootstrap technique [117].

5.8 Experimental hydrodynamic parameters ver-

sus temperature

The temperature dependence of D and Γ are the focus of the rest of this chapter.

To prepare clouds at various temperature, we use two different protocols. After the

initial preparation, we either hold the atoms in the trap or modulate the lattice

amplitude for a controlled time to heat the system. To reach temperatures in the

range T/t = 0.3 − 2, we hold the cloud in the lattice and technical noise heats it at

a rate of 3 t/s. To reach higher temperatures, we modulate the lattice depth at a

frequency of 2 kHz. To avoid losses, we perform this modulation at 595 G where the

interaction is weaker. For these higher temperatures, the compressibility of the gas
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Figure 5.3: Hydrodynamic model parameters. A, Experimental diffusion con-
stant, D, versus temperature (red) and the lower bound on D inferred from the
Mott-Ioffe-Regel limit (gray). Each point is typically determined from 4 different
modulation wavelengths each consisting of 10 different decay times with 30 images
for each decay time. B, Results for the current relaxation rate, Γ, including experi-
mental data (yellow), single-site dynamical mean-field theory results for 〈n〉 = 0.825
and U/t = 7.5 (green), and finite-temperature Lanczos method results on a 16-site
cluster for 〈n〉 = 0.8 − 0.85 and U/t = 7.5 (blue band). Experimental error bars
standard error of the mean.

is reduced and we provide extra radial confinement using a 1064 nm beam from the

bottom to reach appropriate filling.

To determine the temperature of the cloud after the system has equilibrated we fit

the measured singles density, 〈ns〉 and nearest-neighbor spin-up density correlations

C↑(0, 1) versus total density 〈n〉 to determinantal quantum Monte Carlo (DQMC)

simulations with T as the only free parameter (see section 3.6.2). For temperatures

at the low end of the range we can access, between 0.3 < T/t < 1, the density

correlations are a sensitive thermometer. At higher temperature the singles density

is a better thermometer.
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As the temperature is lowered, Pauli blocking closes scattering channels, leading

to an increased range of diffusion, in agreement with our observations in fig. 5.3A.

At high temperatures, D is expected to saturate, eventually approaching an infinite

temperature limiting value [176]. The diffusion constant is closely related to the

mean-free-path, l, and is often estimated as D = l 〈v〉 /2, where 〈v〉 is the mean

quasiparticle velocity [226]. Therefore, the MIR limit implies a lower bound on the

diffusion constant, D & ta2/~, where a is the lattice constant. Our measured diffusion

constants approach this derived bound at high temperatures, but do not violate it.

Because of the difficulty of measuring diffusion constants in materials, this limit has

not been tested in real bad metals. We do not compare the measured diffusion

constants with theory because determining D requires working in the limit λ → ∞,

and exact techniques such as diagonalization of finite systems and DQMC are limited

to small system sizes. Even determining the infinite temperature limiting value is a

non-trivial quantum dynamics problem [227, 228].

In a clean system like ours, momentum relaxation can only occur thanks to umk-

lapp scattering, where a portion of the net momentum in a collision is transferred

to the rigid lattice. Nevertheless, the current relaxation is strong at our interaction

strength, which makes determining the temperature dependence of Γ challenging be-

cause Γ drops out of the model entirely in the overdamped limit. We find that Γ

decreases weakly with decreasing temperature (fig. 5.3B). This trend may again be

understood as Pauli blocking suppressing current relaxation at low temperatures.

We compare the experimental Γ to results from state-of-the-art finite-temperature

Lanczos method (FTLM) and dynamical mean-field theory (DMFT) simulations by

estimating the current relaxation rate as the half-width at half-maximum of the Drude

peak in the optical conductivity. The optical conductivity has an additional peak at

ω ∼ U , but we not expect this high-energy feature affects the low energy, long-

wavelength dynamics considered here. Our experimental Γ agrees reasonably with
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the DMFT results, but exceeds the FTLM results by up to a factor of two. FTLM is

an exact technique expected to give correct results at high temperature.

5.9 Linearity

One possible explanation for the discrepancy between the measured and FTLM cur-

rent relaxation rates is that Γ is sensitive to the amplitude of the density modulation.

To test this, we measure Γ and D versus modulation amplitude. We find D is insen-

sitive to the amplitude in the range explored. Γ shows some amplitude dependence

but, because of the large error bars we can not conclusively say if this is the source

of the discrepancy between experiment and FTLM (fig. 5.4).
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Figure 5.4: Linearity of the density response. A, Modulation amplitude versus
decay time curves for selected initial amplitudes, δn↑(t = 0) = 0.12 (red), 0.08 (blue),
0.055 (green), and 0.035 purple. We see a collapse after scaling the curves to the
initial modulation amplitude, δn↑(0), obtained from a fit. Each point is the average
of ≈ 30 images. B, Variation in fit parameter Γ versus amplitude for the curves
shown in A (red) and a linear fit to the results (dashed line). Γ is normalized by
the extrapolated zero-amplitude value, Γo. C, Variation in fit parameter D versus
amplitude for the curves shown in A (red) and a linear fit to these results (dashed
line). D is normalized by the extrapolated zero-amplitude value, Do. Error bars
standard error of the mean.
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To assess the possibility of nonlinear effects which are not included in our hydro-

dynamic model, we vary the initial amplitude of the density modulation at a fixed

wave vector. The amplitude versus time curves are shown in fig. 5.4A for λ ≈ 12 sites

and temperature T/t = 0.4(1). For each curve, we fit a value for Γ and D to test how

the fitted model parameters change with amplitude. We find no measurable difference

between the temperature of the gas before switching off the potential modulation and

after the density modulation has decayed.

We find the apparent Γ increases with increasing amplitude, and the apparent D

is weakly affected by increasing amplitude. To establish an upper bound on the size of

this effect, we perform a linear fit to the hydrodynamic parameters versus amplitude

and extrapolate a “zero-amplitude” value. We normalize the curve fit parameters

by these values in fig. 5.4B,C. Based on the statistical error in our fit lines, we find

that at a typical experimental amplitude of δn↑ = 0.07, Γ is increased by a factor of

1.4(4) and D by a factor of 1.06(10). Our extracted values for Γ appear to increase

with amplitude, but the statistical error bar is quite large. This is due to the weak

dependence of our model on the value of Γ. In the main text, we are able to obtain

smaller error bars on Γ by simultaneously fitting decay curves at different modulation

wavelengths. That approach is not feasible here because nonlinear effects may depend

on wavelength.

A related but distinct type of nonlinearity is dependence of the charge compress-

ibility on density. As the total density approaches half-filling, the compressibility

decreases. Therefore, the chemical potential modulation we apply tends to decrease

the density at the minimum chemical potential values more than it increases the

density at the maximum chemical potential values. This can lead to the density

modulation deviating from a sinusoid. At T/t = 0.4, the compressibility decreases by

≈ 20 % between 〈n〉 = 0.8− 0.9. At higher temperature, T/t = 4, the compressibility

decreases by ≈ 2 %. We resolve this effect as a shift in the average density between
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the initial density modulation pattern and the long-time equilibrium density. This

effect is largest at the coldest temperatures, and is at most δn↑ ≈ 0.03, which is

comparable to the uncertainty in our density.

5.10 Thermoelectric effects

The hydrodynamic model we consider here neglects thermoelectric effects, which af-

fect the measured density response by coupling local energy density modulations, and

the resulting temperature gradients, to the particle current. We test this assumption

by using local thermometry to search for dynamically generated thermal gradients.

We infer local temperature by measuring the correlator C↑(0, 1). To avoid the effects

of varying density on the this correlator, we consider the time during the density

modulation decay where the amplitude first crosses zero for a choice of wave vector

with underdamped decay. At this time, any spatial variations in the correlator must

be due to thermal gradients, however we find the correlator is flat within experimental

precision.

Several simple theoretical approximations also suggest thermoelectric effects are

small in our parameter regime. Thermoelectric coupling is primarily due to two ef-

fects. The first, which is thermodynamic in nature, is described by the thermoelectric

susceptibility,

ζ = − ∂2Ω

∂µ∂T
=

∂n

∂T

∣∣∣∣
µ

=
∂S

∂µ

∣∣∣∣
T

, (5.19)

where Ω = ε− ST − nµ is the grand potential and S is the entropy. This is a static

quantity, and can be computed, e.g., by FTLM. In the whole temperature regime

accessible by FTLM we find |ζ| . 0.015/t . This is small in the sense that generating

a density gradient of 0.01/a requires a large temperature gradient of ∇T ≈ 0.8 t/a.
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The second thermoelectric coupling effect is the tendency of a temperature gra-

dient to create a chemical potential gradient (and hence a current), described by

the Seebeck coefficient. This is a transport coefficient, and hence more difficult to

calculate. However, several approximation schemes suggest the Seebeck coefficient is

small in our parameter regime due to a maximum of entropy which occurs close to

〈n〉 ≈ 0.83, including the Mott-Heikes approximation [229, 230] and the Kelvin for-

mula [231, 232, 233]. This is in agreement with previous observations using different

models or techniques [170, 229]. In the high-T regime where the Kelvin formula is a

good approximation for the Seebeck coefficient [231, 233], the effect of thermoelectric

coupling on particle diffusion is negligible.

5.11 The Nernst-Einstein relation

To draw a connection between the measured density response and the charge conduc-

tivity, we make use of charge conservation. Charge conservation imposes a connection

between density and current expressed through the continuity equation (eq. 5.13).

Writing this in linear response we find

σ′(ω) = lim
k→0

ω

k2
χ′′(k, ω), (5.20)

where σ′(ω) is the real part of the conductivity and χ′′(k, ω) is the imaginary part of

the density response function.

Inserting the expression for χ (eq. 5.16) into eq. 5.20, we find that the optical

conductivity has a Lorentzian profile with half-width half-maximum Γ,

σ′(ω) =
χcD

1 +
(
ω
Γ

)2 , (5.21)

and the Nernst-Einstein relationship holds for the DC conductivity,
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σ = χcD. (5.22)

The Nernst-Einstein relation is a consequence of eq. 5.20 which holds if the density

has a diffusive mode at long times and large wave vectors. It does not rely on the

exact form of χ in eq. 5.16, but does require the save long wavelength behavior. We

can, for example, take D → Do +D2k
2 or Γ→ Γo + Γ2k

2.

5.12 Compressibility versus temperature

To extract a resistivity using the Nernst-Einstein relation, we need the compressibility.

It is determined in a separate experiment by measuring the variation of total density

versus position in a harmonic trap and converting the position to chemical potential

in the local density approximation [51, 234].

We first determine the harmonic trapping frequencies by fitting the density and

nearest-neighbor density correlation profiles of a weakly interacting gas obtained at

a field of 568.0(1) G, near the non-interacting point of the |1〉 − |3〉 mixture, to the

expected values for a non-interacting Fermi gas determined from eqs. 3.33 and 3.38.

Our cloud is slightly elliptic, with an aspect ratio of ωx/ωy ≈ 1.2. Prior to de-

termining the trapping frequency we perform an azimuthal average, which effectively

rescales our coordinates (x, y)→
(
x
√

ωx
ωy
, y
√

ωy
ωx

)
. We measure r in these coordinates

above, therefore our fitting procedures yields ω̄ =
√
ωxωy. Distance and energy scales

are measured in units of the lattice constant and tunneling energy respectively. We

assume a harmonic trapping potential, µ(r) = µo− 1
2
mω2r2 and fit our cloud profiles

with µo, ω, and T as free parameters. For low temperatures, the lattice beams provide

all the radial confinement, leading to ω̄ = (2π)185(10) Hz. For higher temperatures,

we use a circular beam to provide extra confinement, leading to ω̄ = (2π)280(10) Hz.
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Figure 5.5: Hubbard compressibility versus temperature. A, Results for the
charge compressibility, χc. Experimental results (red points), determinantal quantum
Monte Carlo at 〈n〉 = 0.83 and U/t = 7.5 (green points), and the high-temperature
limit 1/T scaling (black dashed line). Each compressibility point is typically deter-
mined from 60 images. B, Charge compressibility at low temperature for FTLM
(blue band), DQMC (as in A), single-site DMFT at 〈n〉 = 0.825 and U/t = 7.5 (gray
squares), and cellular DMFT (purple squares). Error bars standard error of the mean.

After determining the trapping frequency, we compute the compressibility for the

interacting system density profiles according to

(
∂n

∂µ

)∣∣∣∣
T

= − 1

mω2

(
1

r

∂n

∂r

)
. (5.23)

The measured compressibility increases with decreasing temperature (fig. 5.5A).

For our highest experimental temperatures, χc approaches n(1−n/2)/T , as expected

in the high temperature limit, where T � 8t [176]. At sufficiently low temperature

χc is expected to saturate (see section 3.2.1), but we do not reach this limit at our

lowest experimental temperature, T/t = 0.3. Our experimental results agree well

with DQMC numerics over the full range of experimental temperatures.
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We also compare our measured compressibility with FTLM, and DMFT in

fig. 5.5B. The DQMC and FTLM compressibilities agree well with the experimental

data and do not saturate at low temperatures. In contrast, the single-site DMFT

compressibility saturates at T/t ≈ 1. The increasing compressibility below this

temperature may be associated with short-range correlations [226], which are not

accounted for by single-site DMFT. Cellular DMFT results using a 2 × 2 plaquette

gives excellent agreement with DQMC, supporting this interpretation.

5.13 Experimental DC conductivity

Having experimentally determined both the diffusion constant and the charge com-

pressibility, we apply the Nernst-Einstein relation to determine the conductivity. We

examine the temperature dependence of the resistivity ρ = 1/σ in fig. 5.6, and observe

that it rises without limit, showing no sign of saturation. Assuming the existence of

quasiparticles, the maximum resistivity obtained from the Drude relation using the

MIR limit is ρ < ρmax ≈
√

2π
n
~ [215, 226]. We find that our resistivity violates

this bound for temperatures above T/t ∼ 1.3. The temperature where ρ exceeds this

limit is near the Brinkman-Rice temperature scale, defined by TBR = (1−n)W , where

W = 8t is the band width, which is an estimate of the degeneracy temperature of

quasiparticles in a doped Mott insulator. Similar violation of the resistivity bound at

TBR has been observed in DMFT studies [235, 236].

The failure of ρ to saturate at the resistivity bound is similar to behavior observed

in bad metals at high temperatures [215]. In our system, the violation of the resistivity

bound is not associated with the mean free path becoming shorter than the lattice

spacing because the diffusion constant does not violate its derived bound, but rather

with the temperature dependence of the compressibility [226]. This suggests a need

for a more careful distinction between the MIR limit on the mean free path and the
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Figure 5.6: Conductivity versus temperature. Results for the resistivity, ρ.
Experiment (red), 16-site finite-temperature Lanczos method for U/t = 7.5 and 〈n〉 =
0.8−0.85 (light-blue band), single-site dynamical mean-field theory results for U/t =
7.5, 〈n〉 = 0.825 (green band), and the lower bound on conductivity inferred from
the Drude relation using the Mott-Ioffe-Regel limit, ρmax (gray). Error bars standard
error of the mean.

resistivity bound, despite the presumed equivalence of these concepts in condensed

matter experiments.

To further elucidate the temperature dependence of ρ, we fit our results to the

form ρ(T ) = ρo + AT + BT 2. We find the temperature dependence is linear to

good approximation as we obtain ρo = 1.1(1)~, A = 1.55(15)~
t
, and B = 0.03(3) ~

t2
.

Alternatively, a power law fit to the form ρ(T ) = ρo + (CT )α yields ρo = 1.2(2)~,

C = 1.4(2)~
t
, and α = 1.1(1). Similar fits show the inverse diffusion constant 1/D

scales with α = 0.6(1) and the inverse charge compressibility scales with α = 0.85(20).

In our temperature range, the linear resistivity is a combined result of the temperature

dependence of the diffusivity and compressibility, both of which behave in a non-trivial
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way. This behavior should be contrasted with the high-temperature regime, T � W ,

where D saturates to a limiting value and the resistivity inherits its temperature

dependence from the compressibility, which scales as χc ∝ 1/T [176]. It should also be

contrasted with the low-temperature regime usually considered in condensed matter

where the compressibility has saturated and the resistivity inherits its temperature

dependence from the diffusion constant.

We end with more detailed comparison of resistivity with available theories. At

our higher experimental temperatures we compare with FTLM, which is an exact

technique, and find reasonable agreement (fig. 5.6). The experimental resistivity is

systematically smaller than the FTLM calculation but within error bars. This may

be a result of the uncertainty in determining U/t. At our lowest experimental tem-

peratures, FTLM suffers from finite size effects which become relevant as correlation

lengths approach the cluster size. For the 4 × 4 site cluster considered here, these

effects limit FTLM resistivity calculations to T/t & 1.

Because our experiment explores low temperatures which are inaccessible to

FTLM, we also compare with an approximate technique, single-site DMFT [147]

(fig. 5.6). We find the DMFT tends to overestimate the experimental resistivity at

high temperatures. At our highest experimental temperatures, the DMFT resistivity

is linear with a positive zero-temperature intercept. This linear scaling crosses over

to a second linear scaling with a negative zero-temperature intercept around T/t = 2.

This second linear region continues down to about T/t = 0.8 where the resistivity

acquires a significant quadratic component. These regimes coincide with two different

regimes observed in the DMFT compressibility (fig. 5.5B). Previous DMFT studies

at stronger interaction strengths have also observed these two linear regimes at

intermediate temperatures, finding evidence for resilient quasiparticles in the lower

temperature regime [235, 236]. We do not observe the change of slope in the resis-

tivity expected near T/t = 2 in either the experimental data (within uncertainties)
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or the FTLM results. This suggests a need for comparison between more refined

DMFT and exact theoretical approaches in the regime where this is possible. One

recent comparison between DMFT and FTLM suggests vertex corrections, which are

neglected by DMFT, may be important even at high temperatures [237].

5.14 Comparison of theory techniques

Each of the theory techniques considered in this chapter, DQMC, FTLM, and DMFT,

have different strengths and weaknesses which makes one or another more suitable

for certain comparisons with experiment. We provide a broad outline their strengths

and weaknesses in this section.

DQMC is the method of choice for calculating static quantities because it is an

exact technique which can access the lowest temperatures we reach in the experi-

ment. On the other hand, dynamical quantities are difficult to extract, as DQMC

yields imaginary time Green’s functions which must be analytically continued to real

time. Analytic continuation is an ill-posed problem, and the statistical uncertainty

of DQMC data further complicates matters. In this experiment, we use DQMC to

compute static quantities, including the singles density, spin-up density correlator,

and compressibility.

Obtaining reliable dynamical quantities from DQMC is an active area of research,

and recently resistivity versus temperature calculations for U/t = 6, T/t = 0.2 − 8

and diagonal-neighbor tunneling td = −0.25t have been reported [238]. This study

finds qualitatively similar results to those presented here.

FTLM is an exact technique which provides direct access to both static and dy-

namic correlators but is not capable of reaching either as large system sizes or as low

temperature as DQMC. The minimum temperature it can access is limited by finite

size effects. When correlation lengths exceed the size of the small system used, the
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results no longer reflect the behavior of the system in the thermodynamic limit. In

the main text we use FTLM to compute all dynamic quantities which can be ob-

tained from correlators (current relaxation rate and conductivity). We also provide

the FTLM compressibility in fig. 5.5B and verify that this agrees with the DQMC

result.

DMFT is an approximate technique which maps an interacting problem onto a

self-consistent quantum impurity problem. It becomes exact in infinite dimensions.

The impurity problem can be solved using a variety of techniques. When exact di-

agonalization is used, dynamical quantities can be obtained directly without analytic

continuation. DMFT calculations can be performed at lower temperatures than at-

tainable by DQMC or DMFT. We use DMFT to compute all dynamical quantities

which can be obtained from correlators. We also provide the DMFT compressibil-

ity in fig. 5.5B and verify that this agrees with the DQMC result. This comparison

provides one test of the DMFT approximations.

More detailed descriptions of the FTLM and DMFT techniques used in this work

are available in the supplement to [82].

5.15 Outlook

Our experiment paves the way for future studies of the optical conductivity and

thermopower, which can be examined near equilibrium using a similar approach.

Both of these quantities might be expected to show anomalous scalings, as in the

cuprates [213, 217]. In line with theoretical work such as [235, 236], searching for direct

signatures of resilient quasiparticles using spectroscopic techniques [239] would also be

very interesting. Further experimental studies will also provide important benchmarks

for approximate theoretical methods, as the combination of low temperature, finite-

doping, and dynamics is challenging for exact theoretical approaches.
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Chapter 6

Angle-resolved photoemission

spectroscopy of a Fermi-Hubbard

system

Portions of this chapter are based on work previously published as

P. T. Brown, E. Guardado-Sanchez, B. M. Spar, E. W. Huang, T. P.

Devereaux, and W. S. Bakr. Angle-resolved photoemission spectroscopy

of a Fermi-Hubbard system. arXiv:1903.05678v1.

In this chapter, we extend the program of the previous chapter, studying dy-

namical properties of the Fermi-Hubbard model, by developing a new technique to

measure the single-particle spectral function in an attractive Fermi-Hubbard system.

The single-particle spectral function is a dynamical observable that describes the al-

lowed energy and momentum combinations for single-particle like excitations. The

excitation spectrum reveals fundamental information about a correlated many-body

system. If quasiparticles are present, they appear as sharp peaks in the spectral func-

tion. The spectral function is also sensitive to pairing physics and has been extensively

explored using angle-resolved photoemission spectroscopy (ARPES) on cuprate ma-
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terials to reveal information about the superconducting ground state — including

playing a large role in determining the d-wave symmetry of the gap. ARPES on

cuprates has also revealed a fascinating regime where the gas is in the normal state,

but the spectral function contains an incomplete gap-like feature. This is referred

to as the pseudogap regime, and its origin is not fully understood. There is broad

interest in pseudogap phenomena, and it is now clear that pseudogap features appear

in a variety of strongly correlated materials including continuum Fermi gases near

unitarity.

6.1 Photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle ex-

citations of a many-body quantum system with both energy and momentum res-

olution, providing detailed information about strongly interacting materials [240].

ARPES is a direct probe of fermion pairing, and hence a natural technique to study

the development of superconductivity in a variety of experimental systems ranging

from high temperature superconductors to unitary Fermi gases. In these systems

a remnant gap-like feature persists in the normal state, which is referred to as a

pseudogap [241]. A quantitative understanding of pseudogap regimes may elucidate

details about the pairing mechanisms that lead to superconductivity, but developing

this is difficult in real materials partly because the microscopic Hamiltonian is not

known. Here we report on the development of ARPES to study strongly interacting

fermions in an optical lattice using a quantum gas microscope. We benchmark the

technique by measuring the occupied single-particle spectral function of an attractive

Fermi-Hubbard system across the BEC-BCS crossover and comparing to quantum

Monte Carlo calculations. We find evidence for a pseudogap in our system that opens

well above the expected critical temperature for superfluidity. This technique may
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also be applied to the doped repulsive Hubbard model, which is expected to exhibit

a pseudogap at temperatures close to those achieved in recent experiments [73].

Photoemission spectroscopy measures the occupied single-particle spectral func-

tion [240, 242, 243], which describes the allowed energies for a single-particle excita-

tion with given momentum. ARPES has been used to study the presence of a Fermi

surface, the lifetime of quasiparticles, superconducting gaps and their symmetries,

and surface states in topological materials [244, 245]. It is illustrative to consider

some generic features of the spectral function as we introduce interactions. For a

non-interacting system with dispersion εk, the single-particle excitations are eigen-

states of the system implying they have a definite energy and infinite lifetime. The

spectral function is a delta function, A(k, ω) = δ(~ω− εk +µ) where µ is the chemical

potential. Turning on weak interactions may create a Fermi liquid state, where the

spectral function has a similar form but broadens along the energy axis reflecting the

finite lifetime of the quasiparticles. In superconducting systems, more radical changes

may occur including the development of a gap separating two disconnected spectral

function branches. In weak coupling (BCS) superconductors, the gap vanishes at the

critical temperature. However in many strongly-interacting superconducting systems,

including the high-temperature cuprate superconductors (HTSC’s) and the unitary

Fermi gas, a depression in the spectral weight at the chemical potential persists in

the normal state [241, 246, 247, 248, 249, 250, 251, 252]. These so called pseudogap

states might arise from the same pairing mechanism as the superconducting ground

states, and developing a better understanding of their properties may shed light on

pairing physics in the HTSC’s.

Photoemission spectroscopy with cold atoms has been used to study the pseudo-

gap regime in strongly interacting Fermi gases without a lattice. The idea was first

proposed using Raman techniques [253], but was realized with momentum-resolved

radiofrequency (rf) spectroscopy [239]. Previous experiments have explored the BEC-
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BCS crossover in 3D [239, 248, 254] and 2D [250, 255] continuum systems. These

experiments inferred the presence of a pseudogap from spectral features that exhibit

“back-bending” near the Fermi surface at temperatures above Tc, in analogy to the

back-bending observed in the BCS dispersion. This interpretation has been criticized

because back-bending can also arise due to other effects, including universal short

range physics expected in continuum systems [256]. Exact theory techniques were not

available for these systems, therefore experiments compared with various T -matrix

approximation schemes [257, 258, 259] which become exact for weak interactions.

Here we extend photoemission spectroscopy to strongly-correlated lattice systems.

We take advantage of quantum gas microscopy techniques to obtain high signal-to-

noise data using a single layer 2D system, avoiding the complication of integration over

a third axis of momentum space. Combining photoemission spectroscopy with quan-

tum gas microscopy poses a technical challenge because photoemission spectroscopy

relies on a large field of view for time-of-flight measurements to reach momentum

space, whereas quantum gas microscopy is limited to a small field of view over which

the atoms can be pinned during imaging. We solve this problem by developing a

new measurement protocol which consists of four parts, illustrated in fig. 6.1A. First,

we excite atoms from the interacting system to a non-interacting final state using

a radiofrequency pulse. Next, we perform band mapping to adiabatically connect

quasimomentum states in the lattice to real momentum states. Then, we allow the

atoms to expand in a harmonic trap for a quarter period which maps the atomic

momentum distribution to the real space distribution [260]. Finally, we turn on a

deep optical lattice to freeze the atoms in place in preparation for site resolved imag-

ing. The momentum detection portion of this protocol has been discussed in a recent

proposal for measuring the spectral function in 1D systems using lattice modulation

techniques [261].
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We benchmark the ARPES technique by studying the pseudogap regime in the

attractive Hubbard model. There has been comparatively little experimental work on

this system [71, 79, 80, 262], but it has a number of advantages as a testing ground

for our new protocol. Unlike the repulsive model, the attractive model does not have

a sign problem, meaning it is possible to make high-precision theory calculations

using DQMC at low temperatures. Furthermore, the 2D attractive model exhibits

phenomenology similar to other strongly interacting superconducting systems. In par-

ticular, it exhibits a BCS-BEC crossover with increasing on-site interaction strength

and a Berezinskii-Kosterlitz-Thouless (BKT) transition to an s-wave superconducting

state at low temperatures [154]. At weak interactions the ground state is BCS-like,

and pairing is destroyed at the critical temperature for superconductivity, Tc. As

the interaction strength is increased, pairing persists above the critical temperature

and is destroyed at some higher temperature T ∗ > Tc. Intermediate temperatures,

Tc < T < T ∗, exhibit a pseudogap which appears as a depression in either the density

of states or spectral function at the Fermi energy [263, 264, 265]. As the interaction

strength increases, the pairing changes character from momentum-space to real-space

and from many-body to two-body, and the pseudogap temperature increases mono-

tonically. In the BEC limit, the pseudogap represents a regime of real-space bosonic

pairs which develop phase coherence below Tc.

6.2 Experimental preparation

In this experiment, we study an attractive Hubbard system with interactions ranging

from intermediate coupling, U/t = −4, to strong coupling, U/t = −8, where t is

the tunneling energy. We observe the emergence of a pseudogap as we increase the

interaction at fixed temperature, T/t ∼ 0.5. This is well above the theoretically

calculated maximum Tc for this model T/t ∼ 0.15 [154]. At strong coupling and
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higher temperatures, we observe the presence of two branches in the occupied spectral

function due to the coexistence of single and paired atoms.

To begin, we prepare an equal mixture of hyperfine states |↑〉 = |3〉 and |↓〉 = |1〉

in a 2D trap at a field of ∼120 mG where the scattering length a13 ∼ −800 ao [128],

where ao is the Bohr radius and |i〉 denotes the ith lowest hyperfine state of lithium.

We adiabatically load a 2D optical lattice with lattice spacing a = 752 nm to depths

between 5 and 10 Er, where Er/h = 14.7 kHz is the lattice recoil energy. The optical

lattice provides harmonic confinement with a trapping frequency ωl = (2π)160 −

200 Hz depending on the final lattice depth. We then apply a 1 ms radiofrequency (rf)

pulse to transfer∼15 % of the |↑〉 atoms to a third state |f〉 = |2〉 (fig. 6.1A, left panel).

Final state interactions are negligible because the scattering lengths a12 ∼ 0 ao and

a23 ∼ 25 ao are small. We determine the initial quasimomentum distribution of the

probed atoms by performing band mapping and subsequently expanding for a quarter

period in a harmonic trap. To achieve this, we change the intensity of a harmonic

trapping potential from zero to full in a few microseconds. At full intensity, this

beam has trapping frequency ω = (2π)360 Hz. Then, we ramp the lattice potential

to zero linearly in 200 µs before allowing the atoms to expand for T/4 = 700 µs. The

real space density distribution after the quarter period expansion reflects the initial

quasimomentum distribution of the |f〉 atoms according to ñf (k) = nf (r)l
4, where

l =
√
~/mω is the harmonic oscillator length and k = r/l2.

6.3 Radiofrequency spectroscopy

We obtain the energy dependence of the spectral function by measuring the density

profile at a range of rf frequencies. For each frequency, ν, we obtain a two-dimensional

image, nf (r, ν) as shown in fig. 6.1B. Each pixel in the image is associated with a

different quasimomentum. To improve our signal-to-noise, we spatially average using
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Figure 6.1: ARPES technique and raw data. A, A radiofrequency photon of
energy hν is incident on an interacting system with a dispersion (blue) and excites
state |↑〉 atoms to state |f〉 with a non-interacting final dispersion shown in green (far
left). The dispersions are plotted along the high-symmetry lines of the Brillouin zone,
with Γ = (0, 0), X = (π, 0), and M = (π, π). We perform band mapping to map
quasimomentum to momentum (second from left) by ramping down the lattice depth
adiabatically with respect to the band gap. The atoms expand for a quarter period
in a harmonic trap (third from left). Atoms (green ring) with initial momentum
~k expand to position r = k/l2 (solid green circle). Finally, we freeze the position
of the atoms by ramping up an optical lattice to ∼60 Er (right-most). B, Atomic
density after the quarter period expansion for a range of frequencies ν at U/t =
−7.5(1) and T/t = 0.55(3). From left to right, hν/t = −10.5, −8.6, −6.6, and −3.6
and −1.7, measured with respect to the |↑〉 − |f〉 Zeeman splitting. Average of 40
pictures, binned, and averaged using the symmetry of the square. Field of view of
40 µm× 40 µm.
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Figure 6.1: C, DQMC results for A(k, εk − hν)F (εk − hν) at U/t = −7.5 and T/t =
0.55 for the same values of ν shown in B. D, Experimental (points) and DQMC
(solid green lines) results for the occupied spectral function, DQMC results for the
full spectral function (dashed lines), and chemical potential (black lines) at several
quasimomenta in the Brillouin zone. From left to right, (kx, ky) = (0, 0), (π/4, 0),
(π/2, 0), and (π, 0). Error bars standard error of the mean.

the symmetry of the square. The final density distribution of state |f〉 atoms is

proportional to the occupied single-particle spectral function, nf (r, ν) ∝ A(k, εk −

hν − µ)F (εk − hν − µ), where F is the Fermi function. The energy of the final state

is given by the tight-binding dispersion εk/t = 4 − 2 cos(kxa) − 2 cos(kya), and the

energy of the initial state is εk − hν where hν is the rf photon energy. The rf photon

carries negligible momentum, therefore the initial momentum is the same as the final

momentum. This transition is illustrated schematically in momentum space (fig.6.1A,

left panel).

The density profiles change shape as the rf frequency is scanned, a characteris-

tic of an interacting system. At large red detuning relative to the non-interacting

transition, the transferred density is more heavily weighted towards the edges of

the Brillouin zone (fig. 6.1B, leftmost). As the detuning is decreased, the density

becomes peaked at the center and the transfer increases (center). Decreasing the

detuning further leads to less transfer but does not significantly change the shape

(rightmost). To further quantify the energy dependence of the spectral function we

focus on individual quasimomenta and plot the corresponding energy distribution

curves (EDC’s) in fig. 6.1D. We compare our experimental results with determinantal

quantum Monte Carlo (DQMC) calculations at U/t = −7.5 and T/t = 0.55, which

are shown in fig. 6.1C and D and find good agreement. The full DQMC spectral func-

tion (fig. 6.1D) exhibits a depression near the central chemical potential, indicating

a pseudogap at this temperature and interaction.
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6.4 Band mapping simulation

 0

 5

-π 0 π

n(
k)

k (1/a)

Figure 6.2: Band mapping simulation. Quasimomentum distribution (blue cir-
cles) and scaled atomic density after band mapping procedure (red line). These show
good agreement for the parameters used in the experiment.

We perform a 1D simulation of the band mapping procedure used in the exper-

iment following [266] to assess what effect atomic motion during the band mapping

has on the final density profiles. This is an important verification step because the

band mapping time, 200µs, is only a factor of ∼3 shorter than the quarter period

expansion time of 700µs.

To model the band mapping, we first find the lowest eigenstates of a single-particle

Hamiltonian with potential given by the sum of a lattice and harmonic trap in real

space. Then we change the lattice depth linearly from the initial depth to zero while

time evolving the initial eigenstates using the Crank-Nicholson method. We simulate

the quarter period expansion in the harmonic trap evolution using the propagator

U(x, t|x′, 0) =

√
1

2πi sin(ωt)l2
exp

[
i

1

2l2 sin(ωt)

(
(x2 + x′2) cos(ωt)− 2xx′

)]
, (6.1)
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where l =
√

~
mω

is the harmonic oscillator length.

The results of this procedure are shown in fig. 6.2 for an initial temperature

of T/Er = 1/30, a lattice depth of 6.5 Er, a harmonic trapping frequency of ωi =

(2π)200 Hz and a band mapping time of 200 µs. The expansion trap frequency is

ωf = (2π)360 Hz and one quarter period is ∼ 700 µs.

We compare the results of the band mapping procedure to the initial quasimomen-

tum distribution, which we determine by projecting the eigenstates of the initial trap

on to the Bloch eigenstates of the lattice. We determine the scaling factor between

the two using a least-squares fit as we do for the experimental data. This fit typically

requires less than a 10% rescaling of the density. We find that the largest discrepancy

occurs at the edges of the Brillouin zone where the gaps are smallest. The average

fractional discrepancy between the quasimomentum distribution and the scaled band

map density distribution is less than 10%.

6.5 The single-particle spectral function

In this section, we discuss the definition and physical interpretation of the single-

particle spectral function. We also elucidate some of its useful properties and highlight

its connection to the quantities measured in the experiment.

The single-particle spectral function can be thought of as a momentum-resolved

density of states, and as such gives information about the allowed energies for an

excitation with momentum k. It carries the frequency domain information associated

with the single-particle retarded Green’s function, which encodes information about

the lifetime of these excitations. The single-particle retarded Green’s function is given

by,

GR(k, t) = − i
~
θ(t)

〈[
ck(t), c

†
k(0)

]
+

〉
. (6.2)

151



The first term in the anticommutator,
〈
ck(t)c

†
k(0)

〉
, describes what happens if we cre-

ate a particle excitation with momentum k, watch this excitation propagate until time

t > 0, and then measure the overlap of this state with the initial state. The second

term,
〈
c†k(0)ck(t)

〉
, can be interpreted similarly but for holes instead of particles.

We draw the connection between GR and the spectral function by writing GR in

the spectral (Lehmann) representation. We arrive at this by Fourier transforming

and expanding in a basis of eigenstates |n〉 with energies εn and partition function Z

GR(k, ω) =
1

Z

∑
n,m

e−βεn

∣∣∣〈m∣∣∣ c†k ∣∣∣n〉∣∣∣2
~ω + εn − εm + iη

+ e−βεn
|〈m| ck |n〉|2

~ω − εn + εm + iη
(6.3)

= G+(k, ω) +G−(k, ω). (6.4)

Here η ∈ R+ and we always consider the limit η → 0+. The terms G+ and G− come

from the anticommutator in GR and can again be associated with creating a particle

and hole excitation respectively.

The single-particle spectral function is the imaginary part of this above expression,

A(k, ω) = − 1

π
Im{GR(k, ω)} (6.5)

=
1

Z

∑
n,m

[
e−βεn

∣∣∣〈m∣∣∣ c†k ∣∣∣n〉∣∣∣2 δ (~ω + εn − εm)

+e−βεn |〈m| ck |n〉|2 δ (~ω − εn + εm)
]
. (6.6)

These two terms can also be written,

= A(k, ω) [1− F (ω)] + A(k, ω)F (ω) (6.7)

= Aunocc(k, ω) + Aocc(k, ω), (6.8)

where Aunocc represents particle injection and Aocc, the occupied spectral function,

represents photoemission.
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The spectral function counts single-particle excitations at a given momentum and

frequency. In this sense it may be thought of as a momentum resolved density of

states. More precisely, we have the following relationship between the density of

states, ρ(ω) and the spectral function

ρ(ω) =

∫
dk A(k, ω). (6.9)

The spectral function is also closely related to the momentum distribution function

〈nk〉 =
〈
c†kck

〉
=

∫ ∞
−∞

dω A(k, ω)F (ω), (6.10)

which follows from taking the limit τ → 0 in eq. 3.77.

Finally, the spectral function is normalized to unity

∫ ∞
−∞

dω A(k, ω) = 1. (6.11)

6.6 Linear response theory

To draw a connection between the experimental observable, the number of atoms

transferred to the final state |f〉, and the single-particle spectral function, we outline

the linear response theory describing the experiment following [242, 243, 267]. This

approach works in the limit of a perturbatively weak radiofrequency drive.

The Hamiltonian of our system is H = Ho + H′ + Hf , where the unperturbed

Hamiltonians are given by

Ho − µN =
∑
σk

εknkσ + U
∑
i

ni↑ni↓ − µ
∑
i

ni (6.12)

Hf =
∑
k

εknf − hν
∑
i

nif , (6.13)
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where Hf describes the non-interacting final state particles. We choose the band

minimum of the non-interacting dispersion as zero energy. This implies that half-

filling occurs at µ = 4t+ U/2.

We work in the corotating frame of the radiofrequency drive, and we suppose the

driving frequency is νd. The detuning is ν = νd−νo, where hνo is the Zeeman splitting

between non-interacting |↑〉 and |f〉 atoms. We neglect Zeeman splitting between the

|↑〉 and |↓〉 states which is not relevant here. The detuning appears analogous to a

chemical potential for state |f〉. We assume that νo > 0, otherwise the sign of ν

should be reversed in eq. 6.13.

The perturbation term describing the radiofrequency probe in the rotating wave

approximation is

H′ = ~
∑
k,q

(
Ω(q, t)c†k↑ck+qf + Ω∗(q, t)c†k+qfck↑

)
, (6.14)

where Ω(q, t) is the spatial- and time-dependent Rabi frequency. If Ω(r, t) = Ω(t)

is spatially homogeneous, as is usually the case, then the rf does not contribute any

momentum to the system and only the q = 0 term survives,

H′ = ~
∑
k

(
Ω(t)c†k↑ckf + Ω∗(t)c†kfck↑

)
. (6.15)

In the experiment, we measure the total density of atoms transferred by the per-

turbation portion of the Hamiltonian acting for some time δt on our system. As-

suming that the time is short enough and the perturbation is weak enough, we can

apply linear response theory and the atom density is proportional to the atom current

multiplied by δt. The atom current operator is given by

ṅf =
i

~
[H′, nf ] = i

∑
k

(
Ωc†kfck↑ − Ω∗c†k↑ckf

)
(6.16)
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where we use the assumption that Ho conserves particle number to drop it from the

commutator in the first line and the fermionic anticommutation relations to simplify

the commutator. We also take Ω(t) = Ω to be time independent. We work with ṅf ,

effectively going to higher order in perturbation theory, because linear response in nf

vanishes.

Now we can apply a slight generalization of the linear response theory we devel-

oped in section 3.7. The only difference in this case is thatH′ = h(t)M(t)+h∗(t)M †(t)

instead of h(t)M(t). Making the identifications h(t) = ~Ω, M(k, t) = c†k↑ckf , and

O(k, t) = ṅkf , the time-dependent momentum-resolved current to the final state is

given by the generalization of eq. 3.60,

I(k, hν, t) = 〈ṅkf (t)〉 =

∫ ∞
−∞

dt′ Φ(k, t− t′)Ω(t′) + h.c., (6.17)

and the response function is given by eq. 3.61

Φ(k, t) = − i
~
θ(t)

〈[
ṅkf (t), c

†
k↑ckf

]〉
(6.18)

= θ(t)Ω
〈[
c†kf (t)ck↑(t), c

†
k↑(0)ckf (0)

]〉
, (6.19)

where we drop terms like
〈[
c†k↑(t)ckf (t), c

†
k↑(0)ckf (0)

]〉
which vanish because states

↑ and f are non-interacting.

The assumption f does not interact with the initial states allows us to simplify

this response function using Wick’s theorem. As Wick’s theorem only applies to time-

ordered correlation functions, we will exploit the relationship between the frequency

representation of the response function and the Matsubara Green’s function by first

calculating the Matsubara Green’s function and then analytically continuing to ob-

tain the retarded Green’s function in frequency space (see section 3.7.1). Passing to

the Matsubara Green’s function associated with the eq. 6.19 and applying Wick’s
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theorem,

G(k, τ) = −
〈
T c†kf (τ

+)ck↑(τ)c†k↑(0
+)ckf (0)

〉
(6.20)

= Gf (k,−τ)G↑(k, τ), (6.21)

where τ+ > τ > 0+ > 0 and we again drop correlators between states ↑ and f . We

can write the single-particle Green’s functions in terms of the single-particle spectral

function using eqs. 3.76 and 3.77,

G(k, τ) =

∫
dωdω′ Af (k, ω)A↑(k, ω

′)F (ω)F (−ω′)e(ω−ω′)τ , (6.22)

where Af and A↑ are the spectral functions for the |f〉 and |↑〉 states respectively.

Fourier transforming this result to imaginary frequency using eq. 3.72, we have

G(k, iωn) =

∫
dωdω′ Af (k, ω)A↑(k, ω

′)
F (ω′)− F (ω)

iωn + ω − ω′
, (6.23)

where iωn are the bosonic Matsubara frequencies. We analytically continue this to

real frequency by taking iωn → σ + iη to obtain the susceptibility

χ(k, σ) = Ω

∫
dωdω′ Af (k, ω)A↑(k, ω

′)
F (ω′)− F (ω)

(σ + iη) + ω − ω′
, (6.24)

where we reintroduce the factor of Ω from eq. 6.19. Taking the imaginary part of this

expression introduces a factor of −iπδ(σ + ω − ω′),

Im{χ(k, σ)} = −πΩ

∫
dω′ Af (k, ω

′ − σ)A↑(k, ω
′) [F (ω′)− F (ω′ − σ)] (6.25)

The final state spectral function is known because we assume |f〉 is non-

interacting, Af (k, ω) = δ(~ω − εk + hν). If we additionally suppose the final state is

initially unoccupied, then the second Fermi function in eq. 6.25 expression vanishes,
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and we have

Im{χ(k, σ)} = −πΩA↑(k, εk − hν + σ)F (εk + hν + σ). (6.26)

This is nearly the final expression, but to obtain the correct physical frequency σ is

a delicate issue related whether the time evolution is taken under the action of Ho

or Ho − µN . In general, Ho controls the dynamics of the system while Ho − µN

controls the thermodynamics, but this distinction is often elided because the two are

related by an energy offset in particle-number conserving systems. An equivalent

point of view is that Ho is related to Ho − µN by a change of reference frame using

the unitary operator U(t) = exp [iµt
∑

i ni]. Up until now, we have considered time

evolution under Ho − µN . Changing frame from Ho − µN → Ho modifies the time

dependence of ck↑(t)→ ck↑(t)e
−iµt. The effect of this change on the response function

is Φ(k, t)→ Φ(k, t)e−iµt which implies that χ(k, σ)→ χ(k, σ − µ).

Passing back to the physical reference frame by taking by making this substitution,

Im{χ(k, σ)} = −πΩA↑(k, εk − hν − µ+ σ)F (εk + hν − µ+ σ). (6.27)

We obtain the momentum-resolved current from eq. 3.65 using the frequency domain

expression for the Rabi frequency, Ω(σ) = Ωδ(σ) and taking the inverse Fourier

transform,

I(k, hν, t) = −2πΩ2A↑(k, ξk − hν)F (ξk − hν), (6.28)

where ξk = εk − µ. As this expression is time independent, we will suppress the time

argument and write I(k, hν). We also suppress the spin index, writing A = A↑.

The origin of the εk − hν − µ argument for the single-particle spectral function

can be understood intuitively. The current of final state atoms depends on the com-
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bination εk − hν. εk is the energy of the outcoupled atom, implying that εk − hν is

the initial energy. We must additionally subtract µ from the argument because the

spectral function is defined such that ω = 0 represents the system at the chemical

potential.

We can rewrite eq. 6.28 to give the occupied spectral function at equal ω,

A(k, ω)F (ω) ∝ I(k, εk − ω − µ). (6.29)

This expression implies that the momentum resolved current is a measure of the occu-

pied spectral function, however a measurement at a single frequency ν is a complicated

surface in k − ω space.

6.7 Spectral function trap averaging

The spectral function is broadened by the presence of the harmonic trapping potential

which causes the system to sample a range of chemical potentials. We account for

this effect in our theory results using the local density approximation. We model the

trapping potential as an effective spatial variation of the chemical potential according

to µi = µ− Vi, where Vi is the potential at site i. The total current is given by

I(k, hν) =
∑
i

A(k, εk − hν − µi, µi)F (εk − hν − µi), (6.30)

where we explicitly include the dependence of A on µ.

Determining the spectral function for the trapped system is more complicated

than in the uniform system (eq. 6.29) because the convention is to reference ω to

the chemical potential. This choice of reference is of little consequence when working

at fixed density, but when working with multiple densities we must use a consistent

reference point. In this case the physically meaningful quantity is ω + µ. In the
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Figure 6.3: Trap-averaged spectral function. A, The total density, 〈n〉, of the
trapped atoms. Field of view 50 µm × 50 µm. Black squares indicate regions of the
trap with densities n = 0.2, 0.8, and 1.2 from left to right. B, Homogeneous system
spectral functions calculated using DQMC at U/t = −6, T/t = 0.5 and n = 0.2 (left),
0.8 (center), and 1.2 (right). The chemical potential at each density is denoted by
a horizontal blue line. The spectral functions for n = 0.8 and 1.2 reveal evidence
of a pseudogap. C, The trap-average spectral function constructed by weighting the
homogeneous system spectral functions by the area of the trapped cloud at each
density. After trap averaging the pseudogaps at various densities in the trap are
manifest as local minima in the spectral function at a fixed quasimomentum. The
trap averaging blurs but does not destroy signatures of the pseudogap.

trapped system our energy reference is the central chemical potential, meaning that

ω + µ− µi becomes the argument of the spectral functions

I(k, εk − ω − µ) =
∑
i

A (k, ω + µ− µi, µi)F (ω + µ− µi). (6.31)

As we expect eq. 6.28 to hold for the spectral function for the trap Atrap, we

identify

Aocc, trap(k, ω) =

∑
iA (k, ω + µ− µi, µi)F (ω + µ− µi)∑

i 1
(6.32)

Atrap(k, ω) =

∑
iA (k, ω + µ− µi, µi)∑

i 1
, (6.33)
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where normalizing by the total number of sites in the trap ensures that the eqs. 6.9,

6.10, and 6.11 continue to hold.

The trap causes broadening of spectral features and tends to obscure signatures

of gaps or pseudogaps. We illustrate this effect for an experimental density profile in

fig. 6.3. The theoretical homogeneous system spectral functions shown in fig. 6.3B

exhibit a pseudogap for densities n > 0.2. When these functions are combined using

eq. 6.33, the pseudogap feature is broadened over the spread of chemical potentials

where the uniform system exhibits a pseudogap (fig. 6.3C). This effect is also visible in

fig. 6.1C, where the pseudogap feature appears shifted away from the central chemical

potential. Before comparing these results with experiment, we account for Fourier

broadening of the rf pulse by convolving the trap-average spectral function with a

Gaussian with standard deviation h× 1 kHz.

6.8 LDA versus full trap simulation

To assess whether or not the LDA approach to computing the spectral function holds

in our parameter regime, we compare the DQMC occupied spectral functions for a

full trap simulations and for the LDA calculation described by eq. 6.33 in fig. 6.4

for U/t = −3.7 and T/t = 0.48. We expect any deviations from LDA to be more

important at weak interaction, where the pair size is largest.

We choose a central chemical potential of µ/t = 2.45 leading to a peak density

of 〈n〉 ≈ 1.2, and a spatially varying potential of the form V (x, y)/t = 3
256

(x2 + y2).

This corresponds to a trapping frequency of ω = (2π)310 Hz assuming t/h = 1400 Hz,

the tunneling rate in the experiment for the U/t ∼ −4 data. This confinement is

significantly stronger than that used in the experiment, which is at most (2π)200 Hz,

and therefore any deviations from the LDA prediction would be enhanced in this test

compared with the experiment.
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Figure 6.4: Occupied spectral function from LDA versus trap simulation.
Occupied spectral function from DQMC calculated in the LDA (black) and from
a full trap simulation (red) for a peak density of 1.2, and a trapping frequency of
ω = (2π)310 Hz. The two approaches match well, although small differences in the
EDC shapes are visible.

We find good agreement between the full trap and LDA occupied spectral func-

tions, indicating the LDA holds for the confinement considered here. There are small

deviations between the shapes of the LDA and full trap simulation, with the LDA

EDC’s being somewhat more asymmetric. This relatively small discrepancy may have

a number of origins, including the limited density resolution used to compute the LDA

spectral function, difficulties in resolving fine details due to analytic continuation, or

corrections to the LDA.

We do not compare the full trap and LDA spectral functions, as these are strongly

dependent on the number of empty sites included in the calculation. This is because

the full spectral function is sensitive to both occupied and unoccupied states. In the

limit of a large but mostly empty system, the full spectral function will converge to

that of a non-interacting gas.
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6.9 Spectral function versus interaction

Having demonstrated the viability of this photoemission spectroscopy technique, we

focus on elucidating the properties of the attractive Hubbard system by exploring

the evolution of the spectral function with interaction strength and temperature.

First, we consider the low temperature regime, T/t ∼ 0.5, for a range of interactions

U/t = −4, −6, and−7.5. For each interaction strength we determine the temperature,

interaction, and global chemical potential by fitting in-situ densities and correlators

to DQMC results (see section 3.6.2). We determine the occupied spectral function

from the density according to Aocc(k, ω) = nf (k, εk − ω − µ) and obtain the profiles

shown in fig. 6.5. For the weakest interaction we consider, U/t = −4, the spectral

weight is shifted to negative energy relative to the non-interacting dispersion and

there is significant spectral weight near the chemical potential. As we increase the

interaction, the spectral weight shifts further from the non-interacting dispersion and

there is less spectral weight near the chemical potential.

We compare our measurements with DQMC calculations which account for both

the presence of the trap and Fourier broadening of the rf pulse. These results, shown in

the lower panels of fig. 6.5, display similar trends to the experiment. We determine the

proportionality constant between the experimental data and the theoretical spectral

function using a least squares fit. After scaling the experimental data, the theory

agrees well at low quasimomentum (fig. 6.6). At larger quasimomentum near the X

point, the experimental spectral function is systematically smaller than the theory.

This may be due to imperfections in the band mapping process which are more

significant near the edge of the band. A comparison of energy distribution curves

(EDC’s) for experiment and DQMC is shown in fig. 6.6.

We quantify the distribution of spectral weight by fitting each EDC to a Lorentzian

profile and extracting the center position and half-width at half-maximum (HWHM)

values. We emphasize that the resulting graph cannot be interpreted as a disper-
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Figure 6.5: Occupied spectral function versus interaction. A, Experimental
occupied spectral function (top) along directions of high symmetry in the Brillouin
zone for U/t = −3.7(1) and T/t = 0.48(2) with the center position of Lorentzian
fits to each EDC (light blue circles), the chemical potential (blue line) and the non-
interacting dispersion relation (white line). DQMC results (bottom) for U/t = −4 and
T/t = 0.5. At this temperature no pseudogap is present and the effective dispersion
reaches the chemical potential. B, As the interaction is increased to U/t = −6.0(1), a
pseudogap develops at temperature T/t = 0.50(2) and the dispersion pulls back from
the chemical potential. C, At strong interaction U/t = −7.5(1) and low temperature
T/t = 0.55(3) the pseudogap features are more pronounced.
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sion for two reasons. First, there are trap averaging effects, and second even in a

homogeneous system the Fermi function shifts the position of the peak in Aocc(k, ω)

relative to A(k, ω), causing significant deviation from the true dispersion near and

above the Fermi surface (see section 6.10). For U/t = −4, the center of the spectral

weight reaches the chemical potential at a point along the X −M line in momentum

space (fig. 6.5A). For stronger interactions, U/t = −6,−7.5 the center of spectral

weight no longer approaches the chemical potential. This pulling back of the spectral

weight at the chemical potential is a signature of pseudogap behavior. The spectral

width increases weakly with the interaction. At U/t = −4, the HWHM is ∼ 1.2t

with little dependence on the quasimomentum. As we increase the interaction the

width increases to ∼ 2t and ∼ 2.5t at U/t = −6 and U/t = −7.5 respectively. The

measured width is larger than the Fourier broadening which is 1 kHz, corresponding

to ∼ 0.7t, ∼ 0.8t, and ∼ 1t for these interactions. The width is not intrinsic, but due

to the spread of chemical potentials across the harmonic trap.

Determining the presence of a pseudogap in the experimental system is compli-

cated by the fact we measure the occupied spectral function. However, in the theory

we can see the pseudogap open in the full spectral function. We display the full

spectral functions in two ways, as EDC’s in fig. 6.6 and as color plots in fig. 6.7.

The EDC visualization makes it easier to compare the relative height of theoretical

and experimental spectral functions, whereas the color plots emphasize the dispersion

relation.

The EDC results for U/t = −4 (fig. 6.6A) show good agreement between the

occupied spectral function line shapes in experiment and theory. No pseudogap is

visible in the full spectral function EDC’s at this interaction. For U/t = −6 (panel

B), the theory systematically underestimates the height of the experimental occupied

spectral function at low momenta, but agrees well at higher momenta. A pseudogap

emerges in the full spectral EDC’s along the Γ–X and M–Γ lines. For U/t = −8

164



ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)

ΓXMΓ

-5
 0

 5
 1

0

A
B

C

quasimomentum

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)
-1

0
-5

 0
 5

A
B

C

ω
 +

 µ
 (

t)

Figure 6.6: EDC’s versus interaction. Caption continues on the following page.
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Figure 6.6: A, EDC’s from the experimental occupied spectral function (green points)
and theory occupied spectral function (black solid lines) and theory spectral function
(black dashed lines) for experiment at U/t = −3.7(1) and T/t = 0.48(2) and theory
U/t = −4 and T/t = 0.5. The occupied spectral function has significant weight near
the chemical potential at this weak interaction. B, experiment U/t = −6.0(1) and
T/t = 0.50(2) and theory U/t = −6 and T/t = 0.5. At this intermediate interaction,
the spectral weight pulls back from the chemical potential, and a pseudogap develops
in the system. C experiment U/t = −7.5(1) and T/t = 0.55(3) and theory U/t = −7.5
and T/t = 0.55. At strong interaction, the pseudogap is clearly visible as a two-peaked
structure in several of the spectral function EDC’s.
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Figure 6.7: Trap average spectral function versus interaction. A, DQMC
trap-average spectral function for U/t = −4 and T/t = 0.5. No pseudogap feature
is present at this weak interaction. B, U/t = −6 and T/t = 0.5. A clear pseudogap
emerges near intermediate coupling. C, U/t = −7.5 and T/t = 0.55. At strong
coupling, the pseudogap feature is much stronger and present at all momenta.

(panel C), the theory and experiment show good agreement at all momenta. The

pseudogap feature is visible at all momenta along the Γ–X and M–Γ lines.

The pseudogap is visible in the full spectral function color plots for U/t = −6

and −8 (fig. 6.7) and T/t ∼ 0.5. The pseudogap is not present at U/t = −4,

consistent with the calculations of [264]. We determine the peak locations using

a peak-finding algorithm, which identifies multiple peaks more efficiently in the high

quality numerical data. We do not include Gaussian broadening in this figure because

it cannot be compared directly with the experimental results.
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6.10 Dispersion from A(k, ω) versus Aocc(k, ω)

The full spectral function is not accessible in the experiment, and existence of a pseu-

dogap must be inferred from the occupied spectral function. Because this function

has little weight above the chemical potential, the characteristic two peak pseudogap

structure, which we considered in the previous section, is not directly observable.

Instead, we must rely on other indicators, such as if the dispersion passes through

the Fermi energy, to infer the presence of a pseudogap.
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Figure 6.8: Dispersion from A(k, ω) versus Aocc(k, ω). The full spectral function
along high symmetry points in the Brillouin zone, the chemical potential (blue line),
and points of peak spectral weight for A(k, ω) (green points) and Aocc(k, ω) (blue
points). The dispersion inferred from Aocc deviates from the true dispersion as the
spectral weight approaches the chemical potential.

The dispersion inferred by determining the peak in the occupied spectral function

at each momentum is significantly affected by the presence of the Fermi function. Near

the chemical potential this causes the dispersion of the occupied spectral function to

differ significantly from the real dispersion. This effect is most pronounced outside of
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the pseudogap regime because in that case there is significant spectral weight at the

chemical potential. To illustrate this effect, we perform the peak-finding procedure

described in the text using both the full and occupied spectral functions. The results

are displayed in fig. 6.8, showing only peaks with heights greater than 0.02.

6.11 Spectral function versus temperature

We also consider the evolution of the spectral function with increasing temperature

at the strongest interaction, U/t = −7.5. At the lowest temperature, we find little

weight at the Fermi level, fig. 6.9A. As the temperature is increased, a second peak

emerges which approximately follows the non-interacting dispersion, fig. 6.9B,C,D. At

the same time, the lower peak shifts to more negative energy and the spectral func-

tion is gapped at all momenta. At the highest temperatures (fig. 6.9C,D), the Fermi

weighting approaches a constant value and occupied spectral function is proportional

to the full spectral function, Aocc(k, ω) ∼ A(k, ω)/2. In the limit of strong interac-

tions, we can understand the upper and lower features as signatures of unpaired and

paired atoms respectively.

We fit the EDC’s to either one Lorentzian, for the lowest temperatures, or two

Lorentzians, for the higher temperatures. We find temperature has a weak effect on

the peak widths. The HWHM’s of the upper and lower peak are ∼ 1.5t and ∼ 2.5t

respectively. The theory results show that the dispersion obtained from the occupied

spectral function nearly coincides with that obtained for the true spectral function

T/t ∼ 0.5 − 3. They also show that a pseudogap is present at U/t = −8 up to

T/t = 5 (fig. 6.11). The large value of T ∗ is characteristic of strong coupling regime,

and suggests that pairing near U/t = −8 is real-space and two-body in nature.

We plot the EDC’s associated with the strong-coupling temperature scan in

fig. 6.10. The results for T/t = 0.55 (panel A) show good agreement between experi-
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Figure 6.9: Occupied spectral function versus temperature at strong cou-
pling. A, Experimental occupied spectral function along directions of high symmetry
in the Brillouin zone (top) for U/t = −7.5(1) and T/t = 0.55(3) and DQMC (bottom)
for U/t = −7.5 and T/t = 0.55. Also shown are the location of peaks in the occu-
pied spectral function (light blue circle), the chemical potential (blue line), and the
non-interacting dispersion (white line). For this interaction, a pseudogap is present
at low temperatures. B, As the temperature is increased a small amount of spectral
weight appears above the chemical potential. Experiment (top) for U/t = −7.5 and
T/t = 0.93(5) and DQMC (bottom) for U/t = −8 and T/t = 1.04. C, For even
higher temperatures, a second branch of spectral weight emerges above the chemical
potential. Experiment (top) for U/t = −7.5 and T/t = 2.5(1) and DQMC (bottom)
for U/t = −8 and T/t = 2.83. D, Even for the highest temperature considered here,
a spectral gap persists at this interaction strength. Experiment (top) for U/t = −7.5
and T/t = 4.5(1) and DQMC (bottom) for U/t = −8 and T/t = 5.
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Figure 6.10: EDC’s versus temperature. Caption continues on the following
page.
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Figure 6.10: A, EDC’s from the experiment occupied spectral function (green points)
and theory occupied spectral function (black solid lines) and theory spectral function
(black dashed lines) for experiment at U/t = −7.5(1) and T/t = 0.55(3) and theory
at U/t = −7.5, T/t = 0.55. A pseudogap is visible at low temperature and strong
interaction. B, experiment U/t = −7.5 and U/t = 0.93(5) and theory at U/t = −8
and T/t = 1.04. As the temperature is increased, weight starts to develop above the
chemical potential in the occupied spectral function. C, experiment U/t = −7.5 and
T/t = 2.5(1) and theory U/t = −8 and T/t = 2.83. A second branch in the occupied
spectral function emerges above the chemical potential. D, experiment U/t = −7.5
and T/t = 4.5(1) and theory U/t = −8 and T/t = 5.0. The two-branch structure
of the occupied spectral function persists even at temperature greater than half the
band width.
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Figure 6.11: Spectral function versus temperature. A, DQMC trap-average
spectral function for U/t = −7.5 and T/t = 0.55. At low temperature the pseudogap
feature is pronounced and appears at all momenta. B, U/t = −8 and T/t = 1.04. The
full spectral function is little affected by the increase in temperature from T/t ∼ 0.5
to 1. C, U/t = −8 and T/t = 2.83. As the temperature approaches T/t ∼ 3, the
weight of the lower branch of the spectral function shrinks, and the apparent band
width narrows. D, U/t = −8 and T/t = 5.0. At this temperature the majority of
spectral weight is in the upper branch of the spectral function, and the pseudogap
has nearly vanished.

ment and theory. The T/t ∼ 1 results are similar (panel B). There is a small energy

shift between experiment and theory, which is likely due to drift in the magnetic field

during the course of this experiment. At T/t ∼ 2.5 (panel C), the theory captures

the emergence of a second peak in the spectral function. For T/t ∼ 5 (panel D), the

theory shows much weaker two peak structure than the experiment at low momenta.
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The full spectral functions associated with the strong-coupling temperature scan

reveal the presence of a pseudogap even at relatively high temperature, fig. 6.11. A

pseudogap is visible for T/t < 3 (panels A-C), but the case of T/t ∼ 5 (panel D) is

more ambiguous, showing similar structure to T/t ∼ 2.5, but without a clear gap.

6.12 Outlook

In conclusion, we have developed a technique to measure the single-particle spec-

tral function in Hubbard systems using a quantum gas microscope. In combination

with recent transport experiments [82, 85], this extends the toolkit for measuring

dynamical properties of these systems, which is so far rather limited compared with

the techniques available to study HTSC’s and other real materials. Our experiment

paves the way for future studies of the single-particle spectral function in the doped

repulsive Hubbard model, a quantity which is difficult to calculate using exact the-

ory techniques because of the fermionic sign problem. Such an experiment might

elucidate properties of the Hubbard system at high temperature, where dynamical

mean-field theory studies have suggested quasiparticles survive into the linear resis-

tivity regime [235, 236] or test recent parton theories which may describe the doped

antiferromagnetic regime [268]. At lower temperatures currently beyond the reach of

exact theory methods, this technique could be used to study the symmetry of the

pseudogap and superconducting states.
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Chapter 7

Conclusion

The study of ultracold fermions in dilute atomic gases is, 20 years after the first

degenerate atomic Fermi gas, a relatively mature field. Dozens of groups around the

world routinely produce and study such systems. In light of this, the fact there are

many open questions left to address highlights several key features of the field. First,

the tremendous reconfigurability and tunability of these experiments allows new ideas

from disparate areas of condensed matter, quantum information, and other fields to

be quickly adapted and explored. Some of the most interesting avenues of recent

progress, such as many-body localization [269], come from developing new paradigms

for many-body physics. Second, many of the interesting, well-known problems related

to fermions and many-body physics are very hard.

The extension of quantum gas microscopy to fermionic atoms has allowed several

groups, including ours, to make headway on one difficult problem: understanding the

low energy physics of the Fermi-Hubbard model. Much of this progress has come from

using QGM’s to explore new observables or study Hubbard systems in situations that

are very far from what is done in condensed matter experiment, for example working

with extremely large effective magnetic fields, exploring short-range correlations, or
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working in T/t regimes which approach the melting temperatures of real materials.

One surprise is that new physics has been observed in all of these regimes.

The tools developed in this thesis can be applied to a number of other important

questions. For example, it would be interesting to measure the conductivity versus

doping or interaction. The resistivity is expected to cross over from the linear tem-

perature regime studied in chapter 5 to a Fermi liquid regime. Studying resistivity in

the attractive Hubbard model may reveal signatures of the pseudogap or superfluid

regimes. Similar techniques could be applied to measure other transport coefficients,

such as the thermal conductivity and Seebeck coefficient. Comparing charge and

thermal transport may shed light on the strange metal regime. On the other hand,

the ARPES technique can be improved by working in a box potential to avoid the

trap-averaging effects discussed in chapter 6. This technique could also probe the

strange metal regime of the repulsive Hubbard model in search of resilient quasiparti-

cles, or to search for the pseudogap regime. It would be interesting to apply several of

these techniques to the same system to gain a more complete picture of the physics.

More progress can be made in studying the Fermi-Hubbard model even at present

temperature scales by continuing to develop tools to explore new observables. As

discussed in this thesis, many dynamical observables cannot be calculated in theory

even at current temperatures. Cold atom quantum simulators are thus well positioned

to assist in developing theory techniques capable of reliably calculating dynamical

quantities at low temperature, which would have broad implications for understanding

strongly-correlated systems. Other possible directions include the study of topology

and interactions in Fermi-Hubbard systems. Recent experiments [270] suggest it

may be possible to subvert heating effects common to various schemes for realizing

artificial gauge fields [271, 272, 273]. Achieving the more narrow goal of determining

the ground state of the repulsive Fermi-Hubbard model, on the other hand, will

require new cooling techniques or other methods for achieving small T/t values.
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Appendix A

Properties of 6-lithium

In this appendix we collect useful information about 6Li matrix elements and Feshbach

resonances. For more detailed information about the D1 and D2 lines of 6Li, see the

appendix to [274].

A.1 Branching ratios

6Li has 6 hyperfine states in the 2S1/2 ground state. Because of the weak hyper-

fine coupling lithium transitions from the low-field regime, where |F mf〉 are good

quantum numbers, to the high-field regime, where |I mi J mj〉 are good quantum

numbers, in the range 50-100 G. In the other alkalis, the high-field regime is only

reached well above 500 G. For this reason, nearly cycling transitions exist for all

hyperfine ground states of 6Li at modest magnetic bias fields.

To determine how cycling these transitions are, it is useful to consider the ma-

trix elements between the hyperfine levels in the 2S1/2 ground state and the hy-

perfine levels in the 2P3/2 excited state. We display the results in fig. A.1, which

shows the branching ratios from the 2P3/2 state versus magnetic field, revealing

the nearly cycling transitions between the 2S1/2 |mj = ±1/2,mi〉 levels and the

2P3/2 |mj = ±3/2,mi〉 levels.
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Figure A.1: Lithium branching ratios from the D2 line. Lithium branching
ratios from the 12 Zeeman sublevels of the D2 line, which are denoted |ie〉, numbered
up from the lowest energy. Branching ratios to the 2S1/2 Zeeman sublevels, |1g〉 (red),
|2g〉 (orange), |3g〉 (green), |4g〉 (blue), |5g〉 (purple), and |6g〉 (gray). π transitions
are denoted by solid lines, σ+ by dashed lines, and σ− by dotted-dashed lines. A,
branching ratios from the |1e〉 (left), |2e〉 (center), and |3e〉 (right) states. These
become the mj = −3/2 states at high field. Driving the |3g〉, |2g〉, and |1g〉 states
with σ− light gives nearly cycling transitions with these three states at high field.
For the |2g〉 and |1g〉 states, there is finite probability to decay to the |4g〉 and |5g〉
states respectively. B, branching ratios from the |4e〉 (left), |5e〉 (center), and |6e〉
(right) states. These become the mj = −1/2 states at high-field. C, branching ratios
from the |7e〉 (left), |8e〉 (center), and |9e〉 (right) states. These become the mj = 1/2
states at high-field. D, branching ratios from the |10e〉 (left), |11e〉 (center), and |12e〉
(right) states. These becomes the mj = 3/2 states at high-field. Driving the |6g〉,
|5g〉, and |4g〉 states with σ+ light gives nearly cycling transitions with these three
states at high field. For the |5g〉 and |4g〉 states, there is finite probability to decay to
the |1g〉 and |2g〉 states respectively.
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To calculate these matrix elements, we first determine the eigenstates of

the Breit-Rabi problem for both the ground and excited states. This gives

the matrices Bα = 〈(LSJI)Fmf | iα〉 where i is the ith lowest eigenstate and

α = g, e. Expressing the eigenstates in terms of the hyperfine basis states yields

|iα〉 =
∑

F,mf
〈(LSJI)Fmf | iα〉 |(LSJI)Fmf〉.

Next, we determine the decay rates from |je〉 to |ig〉 for photons of angular mo-

mentum q which are given by

Γij =
ω3
o

3πεo~c3

∑
q

| 〈ig|µ(q) |je〉 |2 (A.1)

∝
∑
q

∣∣∣∣∣∣
∑

F,mf ,F ′,m′
f

〈ig| (J)Fmf〉
〈
(J)Fmf

∣∣µ(q)
∣∣(J ′)F ′m′f〉 〈(J ′)F ′m′f ∣∣ je〉

∣∣∣∣∣∣
2

(A.2)

where we have suppressed the L, S, I labels. Using the Wigner-Eckhart theorem we

can rewrite the middle term as the product of a combinatorial factor and a reduced

matrix element common to the entire transition [274, 275],

M(q) =
〈
(LSJI)Fmf

∣∣µ(q)
∣∣(L′S ′J ′I ′)F ′m′f〉

= (−1)F
′−m′

f+J+I+F+1+L′+S+J+1+L′ ×√
(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)(2L+ 1)(2L′ + 1)δII′δSS′ × F ′ 1 F

−m′f q mf


J

′ I F ′

F 1 J


L

′ S J ′

J 1 L


L 1 L′

0 0 0

Rnl,n′l′ . (A.3)

In fact, we only need to write the matrix element in terms of the reduced matrix

elements 〈(LS)J‖µ(1) ‖(L′S ′)J ′〉, but there are two common conventions for these

which differ by a factor of
√

2J + 1. There is no such confusion with the above

expression written in terms of the radial matrix elements.
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The problem reduces to calculating a product of known matrices

Γij =
ω3
o

3πεo~c3

∑
q

|B†gM(q)Be|2, (A.4)

from which we obtain the branching ratios Γij/Γ. For a given excited state level

|je〉, the branching ratios are the probabilities that this level decays to |ig〉. This

follows because the decay rate from any of the excited state Zeeman sublevels is Γ,

i.e.
∑

i Γij = Γ independent of je [274].

A.2 Feshbach resonances

6Li exhibits broad Feshbach resonances [276] among all the states which are high-

field seeking in the high-field regime, i.e. the |12〉, |13〉 and |23〉 channels. These

Feshbach resonances occur where the least bound vibrational level in the singlet (i.e.

the X1Σ+
g ) potential, |ν = 38〉 in 6Li, becomes degenerate with the entrance channel.

We number the vibrational states up from the bottom of the potential, with |ν = 0〉

being the ground state. No Feshbach resonances can occur in the low field seeking

channels, because these have positive magnetic moments, and therefore cannot cross

the molecular states. The binding energies and other properties of the molecular

states are well known from photoassociation studies [277, 278, 279, 280, 281]. We

identify the molecular state using the quantum numbers S = S1 + S2, I = I1 + I2

and l the orbital angular momentum. The molecular singlet state has two allowed

nuclear spin quantum numbers, I = I1 + I2 = 0, 2 which give rise to the broad and

narrow features in each channel [282]. Various experimental studies have measured the

position of these Feshbach resonances or other features in the 6Li scattering lengths

[94, 128, 282, 283, 284, 285, 286, 287].

The location of the narrow Feshbach resonance due to the ν = 38, I = 2 state of

the singlet potential in the |12〉 channel is well known, but to our knowledge no group
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has reported the location of the corresponding feature in the other channels. In the

process of working with a |23〉 mixture in [71] we discovered a loss feature near 714 G

which we believe to be the corresponding resonance in this channel.

The least bound state of the triplet (i.e. the a3Σ+
u ) potential, |ν = 9〉 is predicted

to lead to Feshbach resonances among these channels at fields approaching 4000 G

and 9000 G [288]. The resonances have not been observed experimentally. The triplet

potential also supports a “nearly bound” state which leads to the large negative triplet

scattering length in 6Li [280].

We summarize the various known Feshbach resonances of 6Li in table A.1. More

detailed information can be found in the given references.

Channel Type Symmetry Field Reference

|12〉 zero-
crossing

527.32(25) G [94]

|12〉 resonance s-wave 543.286(3) G [94]

|12〉 resonance s-wave 832.18(8) G [94]

|23〉 zero-
crossing

589 G [94]

|23〉 resonance? s-wave? 714 G unpublished

|23〉 resonance s-wave 809.76(5) G [94]

|13〉 zero-
crossing

568 G [94]

|13〉 resonance s-wave 689.68(8) G [94]

|11〉 resonance p-wave 160.2(6) G [282]

|12〉 resonance p-wave 186.2(6) G [282]

|22〉 resonance p-wave 215.2(6) G [282]

Table A.1: Known Feshbach resonances and scattering length zero-crossings for 6Li.
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Appendix B

Optical lattice

In this section we briefly summarize a method for obtaining the tunneling and in-

teraction energies for atoms in an optical lattice with contact interactions from a

band structure calculations. Similar calculations are discussed in [30, 289, 290]. We

also discuss features of the four-fold symmetric lattice used in the experiment (see

section 2.5). More information about this geometry is available in [118, 291].

B.1 Band structure for an arbitrary periodic po-

tential

Suppose we have a periodic potential V (r) with lattice basis vectors ai and reciprocal

lattice basis vectors bj. By definition, the potential satisfies V (r+R) = V (r) for any

R =
∑

i niai with ni ∈ Z and the reciprocal lattice basis vectors satisfy ai ·bj = 2πδij.

The periodicity requirement implies that the potential only has non-zero Fourier

components at the reciprocal lattice vectors, K =
∑

j njbj. Expanding the potential
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in Fourier components yields

V (r) =
∑
K

VKe
iK·r (B.1)

VK =
1

V

∫
unit cell

dr V (r)e−iK·r, (B.2)

where V is the volume of the unit cell. The integrals are performed over the unit cell

because the potential is a periodic function, which avoids any convergence issues for

the infinite integral.

The wave function is not periodic, therefore we considers its Fourier transform

over the full real line

ψ(r) =

∫ ∞
−∞

dq ψqe
iq·r (B.3)

ψq =
1

2π

∫ ∞
−∞

dr ψ(r)e−iq·r (B.4)

Suppose that our space is periodic after Ni lattice sites in each direction respec-

tively. The wave functions must also be periodic,

ψq(r) = ψq

(
r +

∑
i

Niai

)
(B.5)

1 = exp

(
i
∑
i

Niq · ai

)
, (B.6)

which requires Niq · ai = 2πn for some integer n. Comparing with the orthogonality

relationship for the reciprocal lattice vectors, the allowed spatial frequencies are

q =
∑
i

ni
Ni

bi, ni ∈ {0, ..., Ni}. (B.7)

181



Writing the single-particle Schrodinger equation in Fourier space after accounting

for the structure imposed on V and ψ gives

~2q2

2m
ψq +

1

a2

∑
K

VKψq−K = Eψq. (B.8)

Two basis states are only coupled if the potential has a Fourier component at their

momentum difference — a manifestation of momentum conservation. Due to the

periodicity of the potential, only states with momenta that differ by a reciprocal

lattice vector are coupled.

Now, we write q in terms of its corresponding quasimomentum in the Brillouin

zone, q = q′ − Q, where Q is a particular reciprocal lattice vector. The previous

equation becomes

~2(q′ −Q)2

2m
ψq′−Q +

1

a2

∑
K

VKψq′−Q−K = Eψq′−Q

~2(q′ −Q)2

2m
ψq′−Q +

1

a2

∑
K′

VK′−Qψq′−K′ = Eψq′−Q,

where we took K′ = K + Q in the second line.

We cast this as a matrix equation by taking the Q’s as indices for the vectors

ψq
Q = ψq−Qand defining a potential matrix VKQ = VK−Q. The fact that only mo-

menta different by a reciprocal lattice vector are coupled implies that this problem

is decoupled for the different q’s in the Brillouin zone. There are Nsites =
∏
Ni

eigenvalue problems

∑
K

(
~2

2m
(q−Q)2δKQ + VKQ

)
ψq
K = Eψq

Q, (B.9)

which yield the Bloch eigenvectors ψq
nQ and the band energies En(q). Solving this

equation on a computer requires truncating the number of reciprocal lattice vectors
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included in the computation. For a 2D or 3D lattice it also requires picking some

ordering for the reciprocal lattice vectors Q =
∑

i nibi, i.e. mapping the 2- or 3-index

tuples given by the ni to a single index.

The choice of origin for our potential V (r) is still a degree of freedom in the

problem, and it has an effect on the Bloch states. Suppose we shifts our coordinates

to be centered at position ro (labeled in the original coordinate system), i.e. we take

Ṽ (r) = V (r− ro). The Fourier components of the two potentials are identical up to a

phase factor, ṼK = e−iK·ro . Writing the analog of eq. B.9 for Ṽ and collecting terms

we find,

∑
K

(
~2

2m
(q−Q)2δKQ + VKQ

)
e−iK·roψ̃q

K = Ee−iQ·roψ̃q
Q, (B.10)

which shows that the Bloch vectors in the new coordinates are related to those in the

old through

ψ̃q
Q = eiQ·roψq

Q. (B.11)

B.2 Wannier Functions

Given a set of Bloch wave functions, we define the Wannier function on site R =∑
i niai

wR(r) =
∑
q

e−iq·Rψq(r). (B.12)

For some choice of the phases of the ψq, this gives the maximally localized wave

function in the ground band of the lattice.

Wannier functions centered at different sites have the same shape. Since the Bloch

wave functions are the product of an exponential factor and a periodic function,
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ψq(r) = eiq·ruq(r), we find

wR(r) =
∑
q

e−iq·Reiq·ruq(r) (B.13)

= wR+R′(r + R′), (B.14)

where we multiply by eiq·R
′
e−iq·R

′
= 1 and use the periodicity of uq to obtain the

second line.

We can also write the Wannier function in terms of the Bloch wave functions in

momentum space, which gives a recipe for calculating Wannier functions using the

results of eq. B.9,

ψq(r) =
∑
Q

ψq
Qe
−i(q−Q)·r (B.15)

wR(r) =
∑
Q,q

ψq
Qe
−i(q−Q)·re−iq·R. (B.16)

We can ask what the relationship between this Wannier function is and a Wannier

function defined with respect to a shifted coordinate system. Inserting eq. B.11 in

the above,

w̃R(r) =
∑
Q,q

ψq(Q)eiQ·roe−i(q−Q)·re−iq·R

w̃R+ro(r− ro) = wR(r) (B.17)

The definition of the Wannier function (eq. B.12) is non-unique up to a choice

of phase factors for the Bloch wave functions. The maximally localized function is

obtained when the phases of the ψq(r) vary smoothly with q [292]. But if we have

obtained Bloch wave functions from a computer simulation, this is not guaranteed to

be the case. Before computing the Wannier function, we must fix the phases of the

Bloch wave functions.
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If Bloch functions are obtained from eq. B.9, the ψq
Q will be real. In this case,

fixing the phase of each wave functions amounts to choosing the sign of each Bloch

function. We choose an ordering for the q vectors, and take the overlap of the two

adjacent wave functions

∑
Q

ψqi(Q)ψqi+1
(Q), (B.18)

and check whether it is less than or greater than zero. If it is less than zero, we take

ψqi+1
→ −ψqi+1

. In 1D, the q vectors are naturally ordered. In 2D, we pick some

convenient ordering. On a square lattice we might begin with q = (−π/2, π/2) and

fix the phases along the line q = (qx, π/2) using the same prescription as in 1D. Then

we can fix phases along each of the lines q = (qo, qy).

Note that this overlap is not the inner product of two wave functions, which is

given by

〈φ| η〉 =

∫ ∞
−∞

dk φ∗(k)η(k) (B.19)

=
∑
Q

∫
BZ

dq φ∗(q−Q)η(q−Q), (B.20)

where φ(q−Q) = ψq(Q)δ(q−q1) and η(q−Q) = ψq(Q)δ(q−q2) are Bloch functions.

Two Bloch functions in the same band are orthogonal because they are never non-zero

at the same k = q−Q.

B.3 Determining tight-binding parameters

The Wannier states are a natural basis for the Hamiltonian. If we are working at low

energies where only the lowest band is relevant and we define the creation operators
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c†iσ as creating a particle in state wRi
, then the free particle Hamiltonian is

H = −
∑
i,j,σ

tij

(
c†iσcjσ + h.c.

)
(B.21)

tij = −
∫ ∞
−∞

dr wRi
(r)

(
− ~2

2m
∇2 + V (r)

)
wRj

(r). (B.22)

For a sufficiently deep lattice, long-distance tunneling terms are suppressed compared

with nearest-neighbor tunneling. In that case, we say we are in the tight-binding limit.

In the tight-binding limit the tunneling integrals can be determined directly from

the band structure, avoiding any calculation of the Wannier functions. Here we

demonstrate this for a two-dimensional square lattice with nearest-neighbor tunneling

tx and ty, and diagonal neighbor tunneling td. Then we have the following tight-

binding model

H = −
∑
i,j

txc
†
(ix,jx)c(ix+1,jx) + tyc

†
(ix,jx)c(ix,jx+1)

+tdc
†
(ix,jx)c(ix+1,jx+1) + tdc

†
(ix,jx)c(ix−1,jx+1) (B.23)

=
∑
k

εknk (B.24)

εk = −2 [tx cos(kx) + ty cos(ky) + td cos(kx + ky) + td cos(kx − ky)] . (B.25)

Evaluating the dispersion at several points in the Brillouin zone and combining

these judiciously yields the tunneling parameters,

tx =
1

8
{[ε(π, 0)− ε(0, 0)] + [ε(π, π)− ε(0, π)]} (B.26)

ty =
1

8
{[ε(0, π)− ε(0, 0)] + [ε(π, π)− ε(π, 0)]} (B.27)

tavg =
1

8
[ε(π, π)− ε(0, 0)] (B.28)

td =
1

16
{ε(0, π) + ε(π, 0)− ε(0, 0)− ε(π, π)} . (B.29)
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For the first two expressions, either of the terms in square brackets would give tx,y in

the absence of diagonal tunneling.

B.4 Interactions in the tight-binding model

So far, we have considered the problem of non-interacting particles in a periodic

potential. Now, consider what happens if we include two species of atoms interacting

with contact interactions given by the pseudopotential 4πas~2
m

δ(r). As usual we label

the species by their spins σ =↑, ↓. If the interaction is sufficiently weak that it does

not modify the shape of the Wannier function, the on-site interaction is

HU = U
∑
i

ni↑ni↓ (B.30)

U =
4πas~2

m

∫
dr |w0(r)|4 (B.31)

U =
4πas~2

m

√
mωz
h

∫
R2

dr
∣∣w2D

0 (r)
∣∣4 (quasi-2D). (B.32)

Stronger interactions can distort the Wannier function by mixing higher bands into

the problem. To reach this regime, the interaction energy must be a substantial

fraction of the band-gap. Multi-band effects can be estimated using various techniques

[192, 293].

To arrive at the quasi-2D expressions, we consider a situation where the z-direction

is much more tightly-confining than the other two. The z-direction is assumed to

have a trapping frequency ωz which is much larger than other energy scales in the

problem. We estimate the wave function in the z-direction by the ground state

harmonic oscillator wave function, and find

w3D(r) =
(mω
π~

)1/4

e−mωzz
2/2~w2D(x,y) (B.33)∫

R3

dr
∣∣w3D(r)

∣∣4 =

√
mωz
h

∫
R2

dr
∣∣w2D(r)

∣∣4 (B.34)
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where w2D(r) and w3D(r) are the 3D and 2D Wannier functions respectively.

B.5 Four-fold interfering lattice

Here we consider the same lattice geometry we discuss in detail in section 2.5, but

now allowing for an arbitrary linear polarization characterized by α, the angle the

polarization vector makes with the z-axis. The lattice potential is a sum of Fourier

components as in eq. B.1. We summarize the Fourier components in table B.1 in

terms of the lattice depth, Vo, the attenuation factor of the retro-reflected electric

fields, r, and the angle the beams make with the x-axis, θ/2. For α = 0 these reduce

to the potential given by eq. 2.27 and table 2.2. We write the total depth in terms of

the intensity of the first incident beam, I, and atomic polarizability α,

Vo =

(
1

2εc
|α|I

)
4
[
(1 + r2)

(
cos2(α) + cos(θ) sin2(α)

)
+ 2r

]
. (B.35)

Kx Ky VK

0 0 −Vo 2(1+r2)

4[(1+r2)(cos2(α)+cos(θ) sin2(α))+2r]

±2k sin(θ/2) 0 −Vo
2r(cos2(α)+cos(θ) sin2(α))

4[(1+r2)(cos2(α)+cos(θ) sin2(α))+2r]

0 ±2k cos(θ/2) −Vo
(1+r2)(cos2(α)+cos(θ) sin2(α))

4[(1+r2)(cos2(α)+cos(θ) sin2(α))+2r]

±2k sin(θ/2) ±2k cos(θ/2) −Vo r

4[(1+r2)(cos2(α)+cos(θ) sin2(α))+2r]

±2k sin(θ/2) ∓2k cos(θ/2) −Vo r

4[(1+r2)(cos2(α)+cos(θ) sin2(α))+2r]

Table B.1: Fourier components of the four-fold interfering lattice for arbitrary polar-
ization angle α.
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Appendix C

Static spin structure factor

In this appendix we present unpublished measurements of the static spin structure

factor for a repulsive Hubbard system at a range of dopings and compare these mea-

surements with DQMC results. Similar results were obtained in [55, 73].

The static spin structure factor is the spatial Fourier transform of the spin corre-

lation functions considered previously,

SF (q) =
∑
d

Cz
spin(d)eiq·d. (C.1)

Near half-filling, the spin structure factor exhibits a peak at q = (π, π) due to the

presence of antiferromagnetic spin correlations.

The static structure factor for various cuprate materials has been measured using

neutron scattering, which reveals the emergence of antiferromagnetic order incom-

mensurate with the lattice spacing at finite doping [294, 295, 296]. Similar behavior

might be expected at small dopings in a 2D Hubbard system. Such incommensurate

order has been observed previously in 1D systems [77].

We observe that static structure factor is strongly peaked at k = (π, π) at half-

filling, interaction U/t = 8, and temperature T/t = 0.4 (fig. C.1). We find good agree-

ment between experiment and DQMC results. As the doping is increased, (fig. C.2),
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the sharp peak in the structure factor broadens. We do not find any evidence for a

sharp peak away from the (π, π) momentum.

We also consider the static structure factor at the weaker interaction U/t = 4

(fig. C.3). We observe weaker antiferromagnetic correlations at this interaction. As

in the U/t = 8 data, the antiferromagnetic peak in the structure factor disappears

quickly upon doping (fig. C.3).
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Figure C.1: Static spin structure factor near half-filling, U/t = 8. A, Exper-
iment (left) and DQMC (right) spin correlations versus distance, Cz

spin(j, i). DQMC
parameters are U/t = 8, T/t = 0.3, and n = 1. B, Experiment (left) and DQMC
(right) static spin structure factor versus distance, SF (qx, qy). C, Experiment (red)
and DQMC (blue) static spin structure factor along the high symmetry Γ−X−M−Γ
line. Error bars standard error of the mean.
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Figure C.2: Static spin structure factor versus doping at U/t = 8 and
T/t = 0.3. A, Static spin structure factor along the high symmetry Γ−X −M − Γ
line for doping n = 1.00. A sharp peak appears at the antiferromagnetic wave vector,
M = (π, π) in both the experiment (red) and DQMC (blue). B, As the doping is
increased to n = 0.66 the sharp peak vanishes and the structure factor exhibits a
broad plateau along the X −M line. C, At quarter filling, n = 0.50, the strength of
the broad plateau also diminishes. Error bars standard error of the mean.
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Figure C.3: Static spin structure factor near half-filling, U/t = 4. A, Exper-
iment (left) and DQMC (right) spin correlations versus distance, Cz

spin(j, i). DQMC
parameters are U/t = 4, T/t = 0.3, and n = 1. B, Experiment (left) and DQMC
(right) static spin structure factor versus distance, SF (qx, qy). C, Experiment (red)
and DQMC (blue) static spin structure factor along the high symmetry Γ−X−M−Γ
line. Error bars standard error of the mean.
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Figure C.4: Static spin structure factor versus doping at U/t = 4 and
T/t = 0.3. A, Γ−X −M −Γ line for doping n = 1.00. A sharp peak appears at the
antiferromagnetic wave vector, M = (π, π) in both the experiment (red) and DQMC
(blue). The peak is weaker than at U/t = 8, as the antiferromagnetic correlations are
less strong. B, As the doping increases to n = 0.84 the peak broadens and diminishes
in height. C, At large doping, n = 0.55, a plateau develops along the X −M line.
Error bars standard error of the mean.

194



Bibliography

[1] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys. 21,
6-7, 467–488 (1982).

[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Microscopic theory of supercon-
ductivity. Phys. Rev. 106, 162–164 (1957).

[3] H. K. Onnes. Communication from the Physical Laboratory of the University
of Leiden 122b (1911).

[4] W. L. McMillan. Transition temperature of strong-coupled superconductors.
Phys. Rev. 167, 331–344 (1968).

[5] J. G. Bednorz and K. A. Müller. Possible high Tc superconductivity in the
Ba-La-Cu-O system. Z. Phys. B 64, 2, 189–193 (1986).

[6] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J.
Huang, Y. Q. Wang, and C. W. Chu. Superconductivity at 93 K in a new
mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev.
Lett. 58, 908–910 (1987).

[7] M. Imada, A. Fujimori, and Y. Tokura. Metal-insulator transitions. Rev. Mod.
Phys. 70, 1039–1263 (1998).

[8] J. Orenstein and A. J. Millis. Advances in the physics of high-temperature
superconductivity. Science 288, 5465, 468–474 (2000).

[9] P. A. Lee, N. Nagaosa, and X.-G. Wen. Doping a Mott insulator: Physics of
high-temperature superconductivity. Rev. Mod. Phys. 78, 1, 17–85 (2006).

[10] P. W. Anderson. The resonating valence bond state in La2CuO4 and supercon-
ductivity. Science 235, 4793, 1196–1198 (1987).

[11] J. Hubbard. Electron correlations in narrow energy bands. Proc. Roy. Soc. A
276, 1365, 238–257 (1963).

[12] J. Kanamori. Electron correlation and ferromagnetism of transition metals.
Prog. Theor. Phys. 30, 3, 275–289 (1963).

[13] M. C. Gutzwiller. Effect of correlation on the ferromagnetism of transition
metals. Phys. Rev. Lett. 10, 159–162 (1963).

195

https://doi.org/10.1007/bf02650179
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.167.331
https://doi.org/10.1007/bf01303701
https://doi.org/10.1007/bf01303701
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1103/revmodphys.78.17
https://doi.org/10.1103/revmodphys.78.17
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1143/ptp.30.275
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159


[14] J. Hubbard. Electron correlations in narrow energy bands. II. The degenerate
band case. Proc. Royal Soc. A 277, 1369, 237–259 (1964).

[15] C. Varma, S. Schmitt-Rink, and E. Abrahams. Charge transfer excitations and
superconductivity in “ionic” metals. Solid State Commun. 62, 10, 681–685
(1987).

[16] V. J. Emery. Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett.
58, 2794–2797 (1987).

[17] V. J. Emery and G. Reiter. Mechanism for high-temperature superconductivity.
Phys. Rev. B 38, 4547–4556 (1988).

[18] F. C. Zhang and T. M. Rice. Effective Hamiltonian for the superconducting Cu
oxides. Phys. Rev. B 37, 3759–3761 (1988).

[19] F. C. Zhang and T. M. Rice. Validity of the t − J model. Phys. Rev. B 41,
7243–7246 (1990).

[20] L. Pietronero, P. Benedetti, E. Cappelluti, C. Grimaldi, S. Strässler, and
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S. Fölling. Direct probing of the Mott crossover in the SU(n) Fermi-Hubbard
model. Phys. Rev. X 6, 021030 (2016).

[46] T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U. Bissbort, and
T. Esslinger. Artificial graphene with tunable interactions. Phys. Rev. Lett.
111, 185307 (2013).

[47] M. Messer, R. Desbuquois, T. Uehlinger, G. Jotzu, S. Huber, D. Greif, and
T. Esslinger. Exploring competing density order in the ionic Hubbard model
with ultracold fermions. Phys. Rev. Lett. 115, 115303 (2015).

[48] P. M. Duarte, R. A. Hart, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T.
Scalettar, N. Trivedi, and R. G. Hulet. Compressibility of a fermionic Mott
insulator of ultracold atoms. Phys. Rev. Lett. 114, 070403 (2015).

[49] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T.
Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet. Observation of antiferro-
magnetic correlations in the Hubbard model with ultracold atoms. Nature 519,
7542, 211–214 (2015).

[50] D. Greif, G. Jotzu, M. Messer, R. Desbuquois, and T. Esslinger. Formation and
dynamics of antiferromagnetic correlations in tunable optical lattices. Phys.
Rev. Lett. 115, 260401 (2015).

[51] E. Cocchi, L. A. Miller, J. H. Drewes, M. Koschorreck, D. Pertot, F. Brennecke,
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F. Brennecke, and M. Köhl. Antiferromagnetic correlations in two-dimensional
fermionic Mott-insulating and metallic phases. Phys. Rev. Lett. 118, 170401
(2017).

[55] N. Wurz, C. F. Chan, M. Gall, J. H. Drewes, E. Cocchi, L. A. Miller, D. Pertot,
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nian. Forschungszentrum Jülich, (2016). ISBN 978-3-95806-159-0.

[135] R. Eder. The Physics of Correlated Insulators, Metals, and Superconductors ,
volume 7 of Modeling and Simulation, chapter Introduction to the Hubbard
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